Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants

. 2018 May 22 ; 34 (20) : 5889-5900. [epub] 20180511

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29715032

Nanoplasmonic sensing (NPS), based on localized surface plasmon resonance, with sensors composed of glass covered with golden nanodisks and overlaid with a SiO2 coating was applied in this study. Egg phosphatidylcholine (eggPC), being an easily accessible membrane-forming lipid, was used for preparation of biomimicking membranes. Small unilamellar vesicles with an approximate hydrodynamic diameter of 30 nm, formed by sonication in 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer, were adsorbed within 10 min on the sensor surface either as intact vesicles or as a planar bilayer. The adsorbed biomembrane systems were further utilized for interaction studies with four different well-known surfactants (negatively and positively charged, zwitterionic, and nonionic) and each surfactant was tested at concentrations below and above the critical micelle concentration (CMC). Our results allowed the evaluation of different NPS patterns for every particular supported membrane system, surfactant, and its concentration. The most significant effect on the membrane was achieved upon the introduction of zwitterionic surfactant micelles, which in fact completely solubilized and removed the lipid membranes from the sensor surface. Other surfactant micelles interacted with the membranes and formed mixed structures remaining on the sensor surface. The studies performed at the concentrations below the CMCs of the surfactants showed that different mixed systems were formed. Depending on the supported membrane system and the type of surfactant, the mixed systems indicated different formation kinetics. Additionally, the final water rinse revealed the stability of the formed systems. To investigate the effect of the studied surfactants on the overall surface charge of the biomembrane, capillary electrophoresis (CE) experiments were carried out in parallel with the NPS analysis. The electroosmotic flow mobility of an eggPC-coated fused silica capillary was used to measure the total surface charge of the biomembrane after its treatment with the surfactants. Our results indicated in general good correlation between CE and NPS data. However, some discrepancies were seen while applying either zwitterionic or positively charged surfactants. This confirmed that CE analysis was able to provide additional data about the investigated systems. Taken together, the combination of NPS and CE proved to be an efficient way to describe the nature of interactions between biomimicking membranes and amphiphilic molecules.

Zobrazit více v PubMed

Marcelino J.; Lima J. L. F. C.; Reis S.; Matos C. Assessing the Effects of Surfactants on the Physical Properties of Liposome Membranes. Chem. Phys. Lipids 2007, 146, 94–103. 10.1016/j.chemphyslip.2006.12.008. PubMed DOI

Keller C. A.; Glasmästar K.; Zhdanov V. P.; Kasemo B. Formation of Supported Membranes from Vesicles. Phys. Rev. Lett. 2000, 84, 5443–5446. 10.1103/PhysRevLett.84.5443. PubMed DOI

Cho N. J.; Jackman J. A.; Liu M.; Frank C. W. PH-Driven Assembly of Various Supported Lipid Platforms: A Comparative Study on Silicon Oxide and Titanium Oxide. Langmuir 2011, 27, 3739–3748. 10.1021/la104348f. PubMed DOI

Langhammer C.; Larsson E. M.; Kasemo B.; Zorić I. Indirect Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry. Nano Lett. 2010, 10, 3529–3538. 10.1021/nl101727b. PubMed DOI

Larsson E. M.; Syrenova S.; Langhammer C. Nanoplasmonic Sensing for Nanomaterials Science. Nanophotonics 2012, 1, 249–266. 10.1515/nanoph-2012-0029. DOI

Jackman J. A.; Špačková B.; Linardy E.; Kim M. C.; Yoon B. K.; Homola J.; Cho N.-J. Nanoplasmonic Ruler to Measure Lipid Vesicle Deformation. Chem. Commun. 2016, 52, 76–79. 10.1039/C5CC06861D. PubMed DOI

Jonsson M. P.; Jönsson P.; Dahlin A. B.; Höök F. Supported Lipid Bilayer Formation and Lipid-Membrane-Mediated Biorecognition Reactions Studied with a New Nanoplasmonic Sensor Template. Nano Lett. 2007, 7, 3462–3468. 10.1021/nl072006t. PubMed DOI

Jackman J. A.; Rahim Ferhan A.; Cho N.-J. Nanoplasmonic Sensors for Biointerfacial Science. Chem. Soc. Rev. 2017, 46, 3615–3660. 10.1039/C6CS00494F. PubMed DOI

Zan G. H.; Jackman J. A.; Kim S. O.; Cho N. J. Controlling Lipid Membrane Architecture for Tunable Nanoplasmonic Biosensing. Small 2014, 10, 4828–4832. 10.1002/smll.201400518. PubMed DOI

Jackman J. A.; Zhdanov V. P.; Cho N. J. Nanoplasmonic Biosensing for Soft Matter Adsorption: Kinetics of Lipid Vesicle Attachment and Shape Deformation. Langmuir 2014, 30, 9494–9503. 10.1021/la502431x. PubMed DOI

Duša F.; Witos J.; Karjalainen E.; Viitala T.; Tenhu H.; Wiedmer S. K. Novel Cationic Polyelectrolyte Coatings for Capillary Electrophoresis. Electrophoresis 2016, 37, 363–371. 10.1002/elps.201500275. PubMed DOI

Witos J.; Samuelsson J.; Cilpa-Karhu G.; Metso J.; Jauhiainen M.; Riekkola M.-L. Partial Filling Affinity Capillary Electrophoresis Including Adsorption Energy Distribution Calculations–towards Reliable and Feasible Biomolecular Interaction Studies. Analyst 2015, 140, 3175–3182. 10.1039/C5AN00210A. PubMed DOI

Ruokonen S.-K.; Duša F.; Lokajová J.; Kilpeläinen I.; King A. W. T.; Wiedmer S. K. Effect of Ionic Liquids on the Interaction between Liposomes and Common Wastewater Pollutants Investigated by Capillary Electrophoresis. J. Chromatogr. A 2015, 1405, 178–187. 10.1016/j.chroma.2015.05.064. PubMed DOI

Jackman J. A.; Avsar S. Y.; Ferhan A. R.; Li D.; Park J. H.; Zhdanov V. P.; Cho N.-J. J.; Yorulmaz Avsar S.; Ferhan A. R.; Li D.; et al. Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance Sensor. Anal. Chem. 2017, 89, 1102–1109. 10.1021/acs.analchem.6b02532. PubMed DOI

Gaš B.; Jaroš M.; Hruska V.; Zusková I.; Stedry M. PeakMaster - A Freeware Simulator of Capillary Zone Electrophoresis. LC·GC Eur. 2005, 18, 282–288.

Kuldvee R.; Lindén M. V.; Wiedmer S. K.; Riekkola M.-L. Influence of Cetyltrimethylammonium Bromide on Phosphatidylcholine-Coated Capillaries. Anal. Bioanal. Chem. 2004, 380, 293–302. 10.1007/s00216-004-2722-y. PubMed DOI

Witos J.; Russo G.; Ruokonen S.-K.; Wiedmer S. K. Unraveling Interactions between Ionic Liquids and Phospholipid Vesicles Using Nanoplasmonic Sensing. Langmuir 2017, 33, 1066–1076. 10.1021/acs.langmuir.6b04359. PubMed DOI

Dacic M.; Jackman J. A.; Yorulmaz S.; Zhdanov V. P.; Kasemo B.; Cho N.-J. Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles. Langmuir 2016, 32, 6486–6495. 10.1021/acs.langmuir.6b00439. PubMed DOI

Reimhult E.; Höök F.; Kasemo B. Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure†. Langmuir 2003, 19, 1681–1691. 10.1021/la0263920. DOI

Reimhult E.; Zäch M.; Höök F.; Kasemo B. A Multitechnique Study of Liposome Adsorption on Au and Lipid Bilayer Formation on SiO2. Langmuir 2006, 22, 3313–3319. 10.1021/la0519554. PubMed DOI

Hautala J. T.; Wiedmer S. K.; Riekkola M.-L. Anionic Liposomes in Capillary Electrophoresis: Effect of Calcium on 1-Palmitoyl-2-Oleyl- Sn-Glycero-3-Phosphatidylcholine / Phosphatidylserine-Coating in Silica Capillaries. Anal. Bioanal. Chem. 2004, 378, 1769–1776. 10.1007/s00216-004-2491-7. PubMed DOI

Stutz H. Protein Attachment onto Silica Surfaces - A Survey of Molecular Fundamentals, Resulting Effects and Novel Preventive Strategies in CE. Electrophoresis 2009, 30, 2032–2061. 10.1002/elps.200900015. PubMed DOI

Iyota H.; Tomimitsu T.; Aratono M. Miscibility of Calcium Chloride and Sodium Dodecyl Sulfate in the Adsorbed Film and Aggregates. Colloid Polym. Sci. 2010, 288, 1313–1320. 10.1007/s00396-010-2263-1. PubMed DOI PMC

Kragh-Hansen U.; le Maire M.; Møller J. V. The Mechanism of Detergent Solubilization of Liposomes and Protein-Containing Membranes. Biophys. J. 1998, 75, 2932–2946. 10.1016/S0006-3495(98)77735-5. PubMed DOI PMC

Lichtenberg D.; Ahyayauch H.; Goñi F. M. The Mechanism of Detergent Solubilization of Lipid Bilayers. Biophys. J. 2013, 105, 289–299. 10.1016/j.bpj.2013.06.007. PubMed DOI PMC

Lichtenberg D.; Ahyayauch H.; Alonso A.; Goñi F. M. Detergent Solubilization of Lipid Bilayers: A Balance of Driving Forces. Trends Biochem. Sci. 2013, 38, 85–93. 10.1016/j.tibs.2012.11.005. PubMed DOI

López O.; De La Maza A.; Coderch L.; López-Iglesias C.; Wehrli E.; Parra J. L. Direct Formation of Mixed Micelles in the Solubilization of Phospholipid Liposomes by Triton X-100. FEBS Lett. 1998, 426, 314–318. 10.1016/S0014-5793(98)00363-9. PubMed DOI

De la Maza a; Parra J. L. Vesicle-Micelle Structural Transition of Phosphatidylcholine Bilayers and Triton X-100. Biochem. J. 1994, 303, 907–914. 10.1042/bj3030907. PubMed DOI PMC

Sun V.; Armani A. M. Real-Time Detection of Lipid Bilayer Assembly and Detergent-Initiated Solubilization Using Optical Cavities. Appl. Phys. Lett. 2015, 106, 071103 10.1063/1.4908270. PubMed DOI PMC

Pizzirusso A.; De Nicola A.; Sevink G. J. A.; Correa A.; Cascella M.; Kawakatsu T.; Rocco M.; Zhao Y.; Celino M.; Milano G. Biomembrane Solubilization Mechanism by Triton X-100: A Computational Study of the Three Stage Model. Phys. Chem. Chem. Phys. 2017, 19, 29780–29794. 10.1039/C7CP03871B. PubMed DOI

Stuart M. C. A.; Boekema E. J. Two Distinct Mechanisms of Vesicle-to-Micelle and Micelle-to-Vesicle Transition Are Mediated by the Packing Parameter of Phospholipid-Detergent Systems. Biochim. Biophys. Acta, Biomembr. 2007, 1768, 2681–2689. 10.1016/j.bbamem.2007.06.024. PubMed DOI

Hinrichsen E. L.; Feder J.; Jøssang T. Random Packing of Disks in Two Dimensions. Phys. Rev. A 1990, 41, 4199–4209. 10.1103/PhysRevA.41.4199. DOI

Nazari M.; Kurdi M.; Heerklotz H. Classifying Surfactants with Respect to Their Effect on Lipid Membrane Order. Biophys. J. 2012, 102, 498–506. 10.1016/j.bpj.2011.12.029. PubMed DOI PMC

López O.; Cócera M.; Wehrli E.; Parra J. L.; de la Maza A. Solubilization of Liposomes by Sodium Dodecyl Sulfate: New Mechanism Based on the Direct Formation of Mixed Micelles. Arch. Biochem. Biophys. 1999, 367, 153–160. 10.1006/abbi.1999.1267. PubMed DOI

Keller S.; Heerklotz H.; Blume A. Monitoring Lipid Membrane Translocation of Sodium Dodecyl Sulfate by Isothermal Titration Calorimetry. J. Am. Chem. Soc. 2006, 128, 1279–1286. 10.1021/ja056389d. PubMed DOI

Yoon B. K.; Jackman J. A.; Kim M. C.; Cho N.-J. J. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants. Langmuir 2015, 31, 10223–10232. 10.1021/acs.langmuir.5b02088. PubMed DOI

Cladera J.; Rigaud J. L.; Villaverde J.; Duñach M. Liposome Solubilization and Membrane Protein Reconstitution Using Chaps and Chapso. Eur. J. Biochem. 1997, 243, 798–804. 10.1111/j.1432-1033.1997.00798.x. PubMed DOI

Viriyaroj A.; Kashiwagi H.; Ueno M. Process of Destruction of Large Unilamellar Vesicles by a Zwitterionic Detergent, CHAPS: Partition Behavior between Membrane and Water Phases. Chem. Pharm. Bull. 2005, 53, 1140–1146. 10.1248/cpb.53.1140. PubMed DOI

Lee T. H.; Hall K. N.; Swann M. J.; Popplewell J. F.; Unabia S.; Park Y.; Hahm K. S.; Aguilar M. I. The Membrane Insertion of Helical Antimicrobial Peptides from the N-Terminus of Helicobacter Pylori Ribosomal Protein L1. Biochim. Biophys. Acta, Biomembr. 2010, 1798, 544–557. 10.1016/j.bbamem.2010.01.014. PubMed DOI

Granqvist N.; Yliperttula M.; Välimäki S.; Pulkkinen P.; Tenhu H.; Viitala T. Control of the Morphology of Lipid Layers by Substrate Surface Chemistry. Langmuir 2014, 30, 2799–2809. 10.1021/la4046622. PubMed DOI

Wells S. S.; De La Toba E.; Harrison C. R. Metal Cation Control of Electroosmotic Flow Magnitude in Phospholipid-Coated Capillaries. Electrophoresis 2016, 37, 1303–1309. 10.1002/elps.201600012. PubMed DOI

Lindén M. V.; Wiedmer S. K.; Hakala R. M. S.; Riekkola M. L. Stabilization of Phosphatidylcholine Coatings in Capillary Electrophoresis by Increase in Membrane Rigidity. J. Chromatogr. A 2004, 1051, 61–68. 10.1016/j.chroma.2004.07.080. PubMed DOI

Katayama H.; Ishihama Y.; Asakawa N. Stable Cationic Capillary Coating with Successive Multiple Ionic Polymer Layers for Capillary Electrophoresis. Anal. Chem. 1998, 70, 5272–5277. 10.1021/ac980522l. PubMed DOI

Barnes J. M. CTAB: A New Disinfectant and Cleaning Agent. Lancet 1942, 239, 531–532. 10.1016/S0140-6736(00)70100-0. DOI

Hoogerheide J. C. The Germicidal Properties of Certain Quarternary Ammonium Salts With Special Reference to Cetyl-Trimethyl-Ammonium Bromide. J. Bacteriol. 1945, 49, 277–289. PubMed PMC

Sujatha J.; Mishra A. K. Effect of Ionic and Neutral Surfactants on the Properties of Phospholipid Vesicles: Investigation Using Fluorescent Probes. J. Photochem. Photobiol., A 1997, 104, 173–178. 10.1016/S1010-6030(96)04537-6. DOI

Lima L. M. C.; Giannotti M. I.; Redondo-Morata L.; Vale M. L. C.; Marques E. F.; Sanz F. Morphological and Nanomechanical Behavior of Supported Lipid Bilayers on Addition of Cationic Surfactants. Langmuir 2013, 29, 9352–9361. 10.1021/la400067n. PubMed DOI

Gómez-Graña S.; Hubert F.; Testard F.; Guerrero-Martínez A.; Grillo I.; Liz-Marzán L. M.; Spalla O. Surfactant (Bi)Layers on Gold Nanorods. Langmuir 2012, 28, 1453–1459. 10.1021/la203451p. PubMed DOI

Pantaler E.; Kamp D.; Haest C. W. M. Acceleration of Phospholipid Flip-Flop in the Erythrocyte Membrane by Detergents Differing in Polar Head Group and Alkyl Chain Length. Biochim. Biophys. Acta, Biomembr. 2000, 1509, 397–408. 10.1016/S0005-2736(00)00322-9. PubMed DOI

Mukerjee P.; Mysels K. J.. Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS-36; National Bureau of Standards, 1971.

Midura R. J.; Yanagishita M. Chaotropic Solvents Increase the Critical Micellar Concentrations of Detergents. Anal. Biochem. 1995, 228, 318–322. 10.1006/abio.1995.1357. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...