• This record comes from PubMed

Executive Function Deficits in Seriously Ill Children-Emerging Challenges and Possibilities for Clinical Care

. 2018 ; 6 () : 92. [epub] 20180418

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The past years have seen an incredible increase in the quality and success rates of treatments in pediatric medicine. One of the resulting major challenges refers to the management of primary or secondary residual executive function deficits in affected children. These deficits lead to problems in the ability to acquire, understand, and apply abstract and complex knowledge and to plan, direct, and control actions. Executive functions deficits are important to consider because they are highly predictive of functioning in social and academic aspects of daily life. We argue that current clinical practice does not sufficiently account for the complex cognitive processes in this population. This is because widely applied pharmacological interventions only rarely account for the complexity of the underlying neuronal mechanisms and do not fit well into possibly powerful "individualized medicine" approaches. Novel treatment approaches targeting deficits in executive functions in seriously ill children could focus on neuronal oscillations, as these have some specific relations to different aspects of executive function. Importantly, such treatment approaches can be individually tailored to the individuals' deficits and can be transferred into home-treatment or e-health solutions. These approaches are easy-to-use, can be easily integrated into daily life, and are becoming increasingly cost-effective.

See more in PubMed

Warnes CA. Adult congenital heart disease: the challenges of a lifetime. Eur Heart J (2017) 38:2041–7.10.1093/eurheartj/ehw529 PubMed DOI

Simmonds NJ. Ageing in cystic fibrosis and long-term survival. Paediatr Respir Rev (2013) 14(Suppl 1):6–9.10.1016/j.prrv.2013.01.007 PubMed DOI

Overholser LS, Moss KM, Kilbourn K, Risendal B, Jones AF, Greffe BS, et al. Development of a primary care-based clinic to support adults with a history of childhood cancer: the tactic clinic. J Pediatr Nurs (2015) 30:724–31.10.1016/j.pedn.2015.05.023 PubMed DOI

Yang Q, Rasmussen SA, Friedman JM. Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet (2002) 359:1019–25.10.1016/S0140-6736(02)08092-3 PubMed DOI

Fierz W. Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends? Med Sci Monit (2004) 10:RA111–23. PubMed

Camfield P, Camfield C. Transition to adult care for children with chronic neurological disorders. Ann Neurol (2011) 69:437–44.10.1002/ana.22393 PubMed DOI

Schor NF. Life at the interface: adults with “pediatric” disorders of the nervous system. Ann Neurol (2013) 74:158–63.10.1002/ana.23910 PubMed DOI

Turkel S, Pao M. Late consequences of chronic pediatric illness. Psychiatr Clin North Am (2007) 30:819–35.10.1016/j.psc.2007.07.009 PubMed DOI PMC

Hopkins RO, Jackson JC. Long-term neurocognitive function after critical illness. Chest (2006) 130:869–78.10.1378/chest.130.3.869 PubMed DOI

de Ruiter MA, Schouten-van Meeteren AY, van Vuurden DG, Maurice-Stam H, Gidding C, Beek LR. Psychosocial profile of pediatric brain tumor survivors with neurocognitive complaints. Qual Life Res (2016) 25(2):435–46.10.1007/s11136-015-1091-7 PubMed DOI PMC

Wolfe KR, Madan-Swain A, Kana RK. Executive dysfunction in pediatric posterior fossa tumor survivors: a systematic literature review of neurocognitive deficits and interventions. Dev Neuropsychol (2012) 37:153–75.10.1080/87565641.2011.632462 PubMed DOI PMC

D’Agati E, Cerminara C, Casarelli L, Pitzianti M, Curatolo P. Attention and executive functions profile in childhood absence epilepsy. Brain Dev (2012) 34:812–7.10.1016/j.braindev.2012.03.001 PubMed DOI

Yarboi J, Compas BE, Brody GH, White D, Rees Patterson J, Ziara K, et al. Association of social-environmental factors with cognitive function in children with sickle cell disease. Child Neuropsychol (2017) 23:343–60.10.1080/09297049.2015.1111318 PubMed DOI PMC

Rose BM, Holmbeck GN. Attention and executive functions in adolescents with spina bifida. J Pediatr Psychol (2007) 32:983–94.10.1093/jpepsy/jsm042 PubMed DOI

Christ SE, Huijbregts SCJ, de Sonneville LMJ, White DA. Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Mol Genet Metab (2010) 99(Suppl 1):S22–32.10.1016/j.ymgme.2009.10.007 PubMed DOI

Acosta MT, Gioia GA, Silva AJ. Neurofibromatosis type 1: new insights into neurocognitive issues. Curr Neurol Neurosci Rep (2006) 6:136–43.10.1007/s11910-996-0036-5 PubMed DOI

Aylward GP. Neurodevelopmental outcomes of infants born prematurely. J Dev Behav Pediatr (2014) 35:394–407.10.1097/01.DBP.0000452240.39511.d4 PubMed DOI

Azouvi P, Arnould A, Dromer E, Vallat-Azouvi C. Neuropsychology of traumatic brain injury: an expert overview. Rev Neurol (Paris) (2017) 173:461–72.10.1016/j.neurol.2017.07.006 PubMed DOI

Loher S, Fatzer ST, Roebers CM. Executive functions after pediatric mild traumatic brain injury: a prospective short-term longitudinal study. Appl Neuropsychol Child (2014) 3:103–14.10.1080/21622965.2012.716752 PubMed DOI

Duffner PK. Risk factors for cognitive decline in children treated for brain tumors. Eur J Paediatr Neurol (2010) 14:106–15.10.1016/j.ejpn.2009.10.005 PubMed DOI

Minisini A, Atalay G, Bottomley A, Puglisi F, Piccart M, Biganzoli L. What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol (2004) 5:273–82.10.1016/S1470-2045(04)01465-2 PubMed DOI

Butler RW, Mulhern RK. Neurocognitive interventions for children and adolescents surviving cancer. J Pediatr Psychol (2005) 30:65–78.10.1093/jpepsy/jsi017 PubMed DOI

Catroppa C, Anderson V. Planning, problem-solving and organizational abilities in children following traumatic brain injury: intervention techniques. Pediatr Rehabil (2006) 9:89–97.10.1080/13638490500155458 PubMed DOI

Diamond A. Executive functions. Annu Rev Psychol (2013) 64:135–68.10.1146/annurev-psych-113011-143750 PubMed DOI PMC

Stuss DT, Alexander MP. Executive functions and the frontal lobes: a conceptual view. Psychol Res (2000) 63:289–98.10.1007/s004269900007 PubMed DOI

Hancock M, Tapscott JL, Hoaken PNS. Role of executive dysfunction in predicting frequency and severity of violence. Aggress Behav (2010) 36:338–49.10.1002/ab.20353 PubMed DOI

Spinella M, Yang B, Lester D. Prefrontal system dysfunction and credit card debt. Int J Neurosci (2004) 114:1323–32.10.1080/00207450490476011 PubMed DOI

Mazaux JM, Masson F, Levin HS, Alaoui P, Maurette P, Barat M. Long-term neuropsychological outcome and loss of social autonomy after traumatic brain injury. Arch Phys Med Rehabil (1997) 78:1316–20.10.1016/S0003-9993(97)90303-8 PubMed DOI

Schraegle WA, Titus JB. Executive function and health-related quality of life in pediatric epilepsy. Epilepsy Behav (2016) 62:20–6.10.1016/j.yebeh.2016.06.006 PubMed DOI

Castellanos I, Kronenberger WG, Pisoni DB. Questionnaire-based assessment of executive functioning: psychometrics. Appl Neuropsychol Child (2016) 7(2):93–109.10.1080/21622965.2016.1248557 PubMed DOI PMC

Chan RCK, Shum D, Toulopoulou T, Chen EYH. Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol (2008) 23:201–16.10.1016/j.acn.2007.08.010 PubMed DOI

Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science (2011) 333:959–64.10.1126/science.1204529 PubMed DOI PMC

Robinson KE, Kaizar E, Catroppa C, Godfrey C, Yeates KO. Systematic review and meta-analysis of cognitive interventions for children with central nervous system disorders and neurodevelopmental disorders. J Pediatr Psychol (2014) 39:846–65.10.1093/jpepsy/jsu031 PubMed DOI

Titz C, Karbach J. Working memory and executive functions: effects of training on academic achievement. Psychol Res (2014) 78:852–68.10.1007/s00426-013-0537-1 PubMed DOI

Chandler DJ, Waterhouse BD, Gao W-J. New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front Neural Circuits (2014) 8:53.10.3389/fncir.2014.00053 PubMed DOI PMC

Goldman-Rakic PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci (1996) 351:1445–53.10.1098/rstb.1996.0129 PubMed DOI

Cools R, D’Esposito M. Inverted-U shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry (2011) 69:e113–25.10.1016/j.biopsych.2011.03.028 PubMed DOI PMC

Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry (2008) 64:739–49.10.1016/j.biopsych.2008.05.015 PubMed DOI

Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci (2010) 30:14273–83.10.1523/JNEUROSCI.1894-10.2010 PubMed DOI PMC

Goschke T, Bolte A. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia (2014) 62:403–23.10.1016/j.neuropsychologia.2014.07.015 PubMed DOI

Brinkman TM, Zhang N, Ullrich NJ, Brouwers P, Green DM, Srivastava DK, et al. Psychoactive medication use and neurocognitive function in adult survivors of childhood cancer: a report from the childhood cancer survivor study. Pediatr Blood Cancer (2013) 60:486–93.10.1002/pbc.24255 PubMed DOI PMC

Pangilinan PH, Giacoletti-Argento A, Shellhaas R, Hurvitz EA, Hornyak JE. Neuropharmacology in pediatric brain injury: a review. PM R (2010) 2:1127–40.10.1016/j.pmrj.2010.07.007 PubMed DOI

Mulhern RK, Khan RB, Kaplan S, Helton S, Christensen R, Bonner M, et al. Short-term efficacy of methylphenidate: a randomized, double-blind, placebo-controlled trial among survivors of childhood cancer. J Clin Oncol (2004) 22:4795–803.10.1200/JCO.2004.04.128 PubMed DOI

Portela MA, Rubiales AS, Centeno C. The use of psychostimulants in cancer patients. Curr Opin Support Palliat Care (2011) 5:164–8.10.1097/SPC.0b013e3283462ff3 PubMed DOI

Smithson EF, Phillips R, Harvey DW, Morrall MCHJ. The use of stimulant medication to improve neurocognitive and learning outcomes in children diagnosed with brain tumours: a systematic review. Eur J Cancer (2013) 49:3029–40.10.1016/j.ejca.2013.05.023 PubMed DOI

Daly B, Kral MC, Brown RT, Elkin D, Madan-Swain A, Mitchell M, et al. Ameliorating attention problems in children with sickle cell disease: a pilot study of methylphenidate. J Dev Behav Pediatr (2012) 33:244–51.10.1097/DBP.0b013e31824ba1b5 PubMed DOI PMC

Lidzba K, Granstroem S, Leark RA, Kraegeloh-Mann I, Mautner V-F. Pharmacotherapy of attention deficit in neurofibromatosis type 1: effects on cognition. Neuropediatrics (2014) 45:240–6.10.1055/s-0034-1368117 PubMed DOI

Conklin HM, Reddick WE, Ashford J, Ogg S, Howard SC, Morris EB, et al. Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. J Clin Oncol (2010) 28:4465–72.10.1200/JCO.2010.28.4026 PubMed DOI PMC

Devlin AM, Panagiotopoulos C. Metabolic side effects and pharmacogenetics of second-generation antipsychotics in children. Pharmacogenomics (2015) 16:981–96.10.2217/pgs.15.55 PubMed DOI

Groenman AP, Schweren LJS, Dietrich A, Hoekstra PJ. An update on the safety of psychostimulants for the treatment of attention-deficit/hyperactivity disorder. Expert Opin Drug Saf (2017) 16:455–64.10.1080/14740338.2017.1301928 PubMed DOI

Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron (2013) 80:751–64.10.1016/j.neuron.2013.10.002 PubMed DOI PMC

Düzel E, Penny WD, Burgess N. Brain oscillations and memory. Curr Opin Neurobiol (2010) 20:143–9.10.1016/j.conb.2010.01.004 PubMed DOI

Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci (2014) 18:414–21.10.1016/j.tics.2014.04.012 PubMed DOI PMC

Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A (1998) 95:7092–6.10.1073/pnas.95.12.7092 PubMed DOI PMC

von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol (2000) 38:301–13.10.1016/S0167-8760(00)00172-0 PubMed DOI

Johnson EL, Dewar CD, Solbakk A-K, Endestad T, Meling TR, Knight RT. Bidirectional frontoparietal oscillatory systems support working memory. Curr Biol (2017) 27:1829.e–35.e.10.1016/j.cub.2017.05.046 PubMed DOI PMC

Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci (2005) 9:474–80.10.1016/j.tics.2005.08.011 PubMed DOI

Varela F, Lachaux J-P, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci (2001) 2:229–39.10.1038/35067550 PubMed DOI

Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci (2001) 2:704–16.10.1038/35094565 PubMed DOI

Mizuhara H, Wang L-Q, Kobayashi K, Yamaguchi Y. A long-range cortical network emerging with theta oscillation in a mental task. Neuroreport (2004) 15:1233–8.10.1097/01.wnr.0000126755.09715.b3 PubMed DOI

Engel AK, Fries P. Beta-band oscillations – signalling the status quo? Curr Opin Neurobiol (2010) 20:156–65.10.1016/j.conb.2010.02.015 PubMed DOI

Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci (2012) 16:606–17.10.1016/j.tics.2012.10.007 PubMed DOI PMC

Freunberger R, Werkle-Bergner M, Griesmayr B, Lindenberger U, Klimesch W. Brain oscillatory correlates of working memory constraints. Brain Res (2011) 1375:93–102.10.1016/j.brainres.2010.12.048 PubMed DOI

Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Frontal preparatory neural oscillations associated with cognitive control: a developmental study comparing young adults and adolescents. Neuroimage (2016) 136:139–48.10.1016/j.neuroimage.2016.05.017 PubMed DOI PMC

Cohen MX. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci (2014) 37:480–90.10.1016/j.tins.2014.06.004 PubMed DOI

Helfrich RF, Knight RT. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn Sci (2016) 20:916–30.10.1016/j.tics.2016.09.007 PubMed DOI PMC

Mathalon DH, Sohal VS. Neural oscillations and synchrony in brain dysfunction and neuropsychiatric disorders: it’s about time. JAMA Psychiatry (2015) 72:840–4.10.1001/jamapsychiatry.2015.0483 PubMed DOI

Singer W. Neuronal oscillations: unavoidable and useful? Eur J Neurosci (2017).10.1111/ejn.13796 PubMed DOI

Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron (2012) 75:963–80.10.1016/j.neuron.2012.09.004 PubMed DOI

Yahata N, Kasai K, Kawato M. Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry Clin Neurosci (2017) 71:215–37.10.1111/pcn.12502 PubMed DOI

Bluschke A, Broschwitz F, Kohl S, Roessner V, Beste C. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci Rep (2016) 6:31178.10.1038/srep31178 PubMed DOI PMC

Hammond DC. What is neurofeedback: an update. J Neurother (2011) 15:305–36.10.1080/10874208.2011.623090 DOI

Micoulaud-Franchi J-A, Geoffroy PA, Fond G, Lopez R, Bioulac S, Philip P. EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front Hum Neurosci (2014) 8:906.10.3389/fnhum.2014.00906 PubMed DOI PMC

Heinrich H, Busch K, Studer P, Erbe K, Moll GH, Kratz O. EEG spectral analysis of attention in ADHD: implications for neurofeedback training? Front Hum Neurosci (2014) 8:611.10.3389/fnhum.2014.00611 PubMed DOI PMC

Sonuga-Barke EJS, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am J Psychiatry (2013) 170:275–89.10.1176/appi.ajp.2012.12070991 PubMed DOI

Bluschke A, Roessner V, Beste C. Editorial perspective: how to optimise frequency band neurofeedback for ADHD. J Child Psychol Psychiatry (2016) 57:457–61.10.1111/jcpp.12521 PubMed DOI

Alvarez J, Meyer FL, Granoff DL, Lundy A. The effect of EEG biofeedback on reducing postcancer cognitive impairment. Integr Cancer Ther (2013) 12:475–87.10.1177/1534735413477192 PubMed DOI

Sterman MB, Egner T. Foundation and practice of neurofeedback for the treatment of epilepsy. Appl Psychophysiol Biofeedback (2006) 31:21–35.10.1007/s10484-006-9002-x PubMed DOI

Hammond DC. Treatment of chronic fatigue with neurofeedback and self-hypnosis. NeuroRehabilitation (2001) 16:295–300. PubMed

de Ruiter MA, Oosterlaan J, Schouten-van Meeteren AYN, Maurice-Stam H, van Vuurden DG, Gidding C, et al. Neurofeedback ineffective in paediatric brain tumour survivors: results of a double-blind randomised placebo-controlled trial. Eur J Cancer (2016) 64:62–73.10.1016/j.ejca.2016.04.020 PubMed DOI

Vosskuhl J, Strüber D, Herrmann CS. Transkranielle wechselstromstimulation. Nervenarzt (2015) 86:1516–22.10.1007/s00115-015-4317-6 PubMed DOI

Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol (2014) 96:42–7.10.1016/j.biopsycho.2013.11.006 PubMed DOI

Fregni F, Otachi PTM, Do Valle A, Boggio PS, Thut G, Rigonatti SP, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol (2006) 60:447–55.10.1002/ana.20950 PubMed DOI

Brittain J-S, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol (2013) 23:436–40.10.1016/j.cub.2013.01.068 PubMed DOI PMC

Jones KT, Peterson DJ, Blacker KJ, Berryhill ME. Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Res (2017) 1667:28–40.10.1016/j.brainres.2017.05.005 PubMed DOI PMC

Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimulat (2015) 8:76–87.10.1016/j.brs.2014.10.012 PubMed DOI PMC

Striefel S. Ethics in neurofeedback practice. In: Budzynski TH, Budzynski HK, Evans JR, Abarbanel A, editors. Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications. Oxford: Academic Press; (2009). p. 475–92.

Hammond DC, Kirk L. First, do no harm: adverse effects and the need for practice standards in neurofeedback. J Neurother (2008) 12:79–88.10.1080/10874200802219947 DOI

Rossiter TR. Patient-directed neurofeedback for AD/HD. J Neurother (1998) 2:54–64.10.1300/J184v02n04_04 DOI

Wei T-Y, Chang D-W, Liu Y-D, Liu C-W, Young C-P, Liang S-F, et al. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory. Biomed Eng Online (2017) 16:128.10.1186/s12938-017-0418-8 PubMed DOI PMC

Rogante M, Silvestri S, Grigioni M, Zampolini M. Electromyographic audio biofeedback for telerehabilitation in hospital. J Telemed Telecare (2010) 16:204–6.10.1258/jtt.2010.004012 PubMed DOI

Espay AJ, Baram Y, Dwivedi AK, Shukla R, Gartner M, Gaines L, et al. At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. J Rehabil Res Dev (2010) 47:573–81.10.1682/JRRD.2009.10.0165 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...