Executive Function Deficits in Seriously Ill Children-Emerging Challenges and Possibilities for Clinical Care
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
29721487
PubMed Central
PMC5915456
DOI
10.3389/fped.2018.00092
Knihovny.cz E-resources
- Keywords
- chronic disease, cognitive dysfunctions, cognitive training, executive function, therapy,
- Publication type
- Journal Article MeSH
The past years have seen an incredible increase in the quality and success rates of treatments in pediatric medicine. One of the resulting major challenges refers to the management of primary or secondary residual executive function deficits in affected children. These deficits lead to problems in the ability to acquire, understand, and apply abstract and complex knowledge and to plan, direct, and control actions. Executive functions deficits are important to consider because they are highly predictive of functioning in social and academic aspects of daily life. We argue that current clinical practice does not sufficiently account for the complex cognitive processes in this population. This is because widely applied pharmacological interventions only rarely account for the complexity of the underlying neuronal mechanisms and do not fit well into possibly powerful "individualized medicine" approaches. Novel treatment approaches targeting deficits in executive functions in seriously ill children could focus on neuronal oscillations, as these have some specific relations to different aspects of executive function. Importantly, such treatment approaches can be individually tailored to the individuals' deficits and can be transferred into home-treatment or e-health solutions. These approaches are easy-to-use, can be easily integrated into daily life, and are becoming increasingly cost-effective.
Experimental Neurobiology National Institute of Mental Health Prague Czechia
Institute of Psychology Technische Universität Dresden Dresden Germany
See more in PubMed
Warnes CA. Adult congenital heart disease: the challenges of a lifetime. Eur Heart J (2017) 38:2041–7.10.1093/eurheartj/ehw529 PubMed DOI
Simmonds NJ. Ageing in cystic fibrosis and long-term survival. Paediatr Respir Rev (2013) 14(Suppl 1):6–9.10.1016/j.prrv.2013.01.007 PubMed DOI
Overholser LS, Moss KM, Kilbourn K, Risendal B, Jones AF, Greffe BS, et al. Development of a primary care-based clinic to support adults with a history of childhood cancer: the tactic clinic. J Pediatr Nurs (2015) 30:724–31.10.1016/j.pedn.2015.05.023 PubMed DOI
Yang Q, Rasmussen SA, Friedman JM. Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet (2002) 359:1019–25.10.1016/S0140-6736(02)08092-3 PubMed DOI
Fierz W. Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends? Med Sci Monit (2004) 10:RA111–23. PubMed
Camfield P, Camfield C. Transition to adult care for children with chronic neurological disorders. Ann Neurol (2011) 69:437–44.10.1002/ana.22393 PubMed DOI
Schor NF. Life at the interface: adults with “pediatric” disorders of the nervous system. Ann Neurol (2013) 74:158–63.10.1002/ana.23910 PubMed DOI
Turkel S, Pao M. Late consequences of chronic pediatric illness. Psychiatr Clin North Am (2007) 30:819–35.10.1016/j.psc.2007.07.009 PubMed DOI PMC
Hopkins RO, Jackson JC. Long-term neurocognitive function after critical illness. Chest (2006) 130:869–78.10.1378/chest.130.3.869 PubMed DOI
de Ruiter MA, Schouten-van Meeteren AY, van Vuurden DG, Maurice-Stam H, Gidding C, Beek LR. Psychosocial profile of pediatric brain tumor survivors with neurocognitive complaints. Qual Life Res (2016) 25(2):435–46.10.1007/s11136-015-1091-7 PubMed DOI PMC
Wolfe KR, Madan-Swain A, Kana RK. Executive dysfunction in pediatric posterior fossa tumor survivors: a systematic literature review of neurocognitive deficits and interventions. Dev Neuropsychol (2012) 37:153–75.10.1080/87565641.2011.632462 PubMed DOI PMC
D’Agati E, Cerminara C, Casarelli L, Pitzianti M, Curatolo P. Attention and executive functions profile in childhood absence epilepsy. Brain Dev (2012) 34:812–7.10.1016/j.braindev.2012.03.001 PubMed DOI
Yarboi J, Compas BE, Brody GH, White D, Rees Patterson J, Ziara K, et al. Association of social-environmental factors with cognitive function in children with sickle cell disease. Child Neuropsychol (2017) 23:343–60.10.1080/09297049.2015.1111318 PubMed DOI PMC
Rose BM, Holmbeck GN. Attention and executive functions in adolescents with spina bifida. J Pediatr Psychol (2007) 32:983–94.10.1093/jpepsy/jsm042 PubMed DOI
Christ SE, Huijbregts SCJ, de Sonneville LMJ, White DA. Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Mol Genet Metab (2010) 99(Suppl 1):S22–32.10.1016/j.ymgme.2009.10.007 PubMed DOI
Acosta MT, Gioia GA, Silva AJ. Neurofibromatosis type 1: new insights into neurocognitive issues. Curr Neurol Neurosci Rep (2006) 6:136–43.10.1007/s11910-996-0036-5 PubMed DOI
Aylward GP. Neurodevelopmental outcomes of infants born prematurely. J Dev Behav Pediatr (2014) 35:394–407.10.1097/01.DBP.0000452240.39511.d4 PubMed DOI
Azouvi P, Arnould A, Dromer E, Vallat-Azouvi C. Neuropsychology of traumatic brain injury: an expert overview. Rev Neurol (Paris) (2017) 173:461–72.10.1016/j.neurol.2017.07.006 PubMed DOI
Loher S, Fatzer ST, Roebers CM. Executive functions after pediatric mild traumatic brain injury: a prospective short-term longitudinal study. Appl Neuropsychol Child (2014) 3:103–14.10.1080/21622965.2012.716752 PubMed DOI
Duffner PK. Risk factors for cognitive decline in children treated for brain tumors. Eur J Paediatr Neurol (2010) 14:106–15.10.1016/j.ejpn.2009.10.005 PubMed DOI
Minisini A, Atalay G, Bottomley A, Puglisi F, Piccart M, Biganzoli L. What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol (2004) 5:273–82.10.1016/S1470-2045(04)01465-2 PubMed DOI
Butler RW, Mulhern RK. Neurocognitive interventions for children and adolescents surviving cancer. J Pediatr Psychol (2005) 30:65–78.10.1093/jpepsy/jsi017 PubMed DOI
Catroppa C, Anderson V. Planning, problem-solving and organizational abilities in children following traumatic brain injury: intervention techniques. Pediatr Rehabil (2006) 9:89–97.10.1080/13638490500155458 PubMed DOI
Diamond A. Executive functions. Annu Rev Psychol (2013) 64:135–68.10.1146/annurev-psych-113011-143750 PubMed DOI PMC
Stuss DT, Alexander MP. Executive functions and the frontal lobes: a conceptual view. Psychol Res (2000) 63:289–98.10.1007/s004269900007 PubMed DOI
Hancock M, Tapscott JL, Hoaken PNS. Role of executive dysfunction in predicting frequency and severity of violence. Aggress Behav (2010) 36:338–49.10.1002/ab.20353 PubMed DOI
Spinella M, Yang B, Lester D. Prefrontal system dysfunction and credit card debt. Int J Neurosci (2004) 114:1323–32.10.1080/00207450490476011 PubMed DOI
Mazaux JM, Masson F, Levin HS, Alaoui P, Maurette P, Barat M. Long-term neuropsychological outcome and loss of social autonomy after traumatic brain injury. Arch Phys Med Rehabil (1997) 78:1316–20.10.1016/S0003-9993(97)90303-8 PubMed DOI
Schraegle WA, Titus JB. Executive function and health-related quality of life in pediatric epilepsy. Epilepsy Behav (2016) 62:20–6.10.1016/j.yebeh.2016.06.006 PubMed DOI
Castellanos I, Kronenberger WG, Pisoni DB. Questionnaire-based assessment of executive functioning: psychometrics. Appl Neuropsychol Child (2016) 7(2):93–109.10.1080/21622965.2016.1248557 PubMed DOI PMC
Chan RCK, Shum D, Toulopoulou T, Chen EYH. Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol (2008) 23:201–16.10.1016/j.acn.2007.08.010 PubMed DOI
Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science (2011) 333:959–64.10.1126/science.1204529 PubMed DOI PMC
Robinson KE, Kaizar E, Catroppa C, Godfrey C, Yeates KO. Systematic review and meta-analysis of cognitive interventions for children with central nervous system disorders and neurodevelopmental disorders. J Pediatr Psychol (2014) 39:846–65.10.1093/jpepsy/jsu031 PubMed DOI
Titz C, Karbach J. Working memory and executive functions: effects of training on academic achievement. Psychol Res (2014) 78:852–68.10.1007/s00426-013-0537-1 PubMed DOI
Chandler DJ, Waterhouse BD, Gao W-J. New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front Neural Circuits (2014) 8:53.10.3389/fncir.2014.00053 PubMed DOI PMC
Goldman-Rakic PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci (1996) 351:1445–53.10.1098/rstb.1996.0129 PubMed DOI
Cools R, D’Esposito M. Inverted-U shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry (2011) 69:e113–25.10.1016/j.biopsych.2011.03.028 PubMed DOI PMC
Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry (2008) 64:739–49.10.1016/j.biopsych.2008.05.015 PubMed DOI
Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci (2010) 30:14273–83.10.1523/JNEUROSCI.1894-10.2010 PubMed DOI PMC
Goschke T, Bolte A. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia (2014) 62:403–23.10.1016/j.neuropsychologia.2014.07.015 PubMed DOI
Brinkman TM, Zhang N, Ullrich NJ, Brouwers P, Green DM, Srivastava DK, et al. Psychoactive medication use and neurocognitive function in adult survivors of childhood cancer: a report from the childhood cancer survivor study. Pediatr Blood Cancer (2013) 60:486–93.10.1002/pbc.24255 PubMed DOI PMC
Pangilinan PH, Giacoletti-Argento A, Shellhaas R, Hurvitz EA, Hornyak JE. Neuropharmacology in pediatric brain injury: a review. PM R (2010) 2:1127–40.10.1016/j.pmrj.2010.07.007 PubMed DOI
Mulhern RK, Khan RB, Kaplan S, Helton S, Christensen R, Bonner M, et al. Short-term efficacy of methylphenidate: a randomized, double-blind, placebo-controlled trial among survivors of childhood cancer. J Clin Oncol (2004) 22:4795–803.10.1200/JCO.2004.04.128 PubMed DOI
Portela MA, Rubiales AS, Centeno C. The use of psychostimulants in cancer patients. Curr Opin Support Palliat Care (2011) 5:164–8.10.1097/SPC.0b013e3283462ff3 PubMed DOI
Smithson EF, Phillips R, Harvey DW, Morrall MCHJ. The use of stimulant medication to improve neurocognitive and learning outcomes in children diagnosed with brain tumours: a systematic review. Eur J Cancer (2013) 49:3029–40.10.1016/j.ejca.2013.05.023 PubMed DOI
Daly B, Kral MC, Brown RT, Elkin D, Madan-Swain A, Mitchell M, et al. Ameliorating attention problems in children with sickle cell disease: a pilot study of methylphenidate. J Dev Behav Pediatr (2012) 33:244–51.10.1097/DBP.0b013e31824ba1b5 PubMed DOI PMC
Lidzba K, Granstroem S, Leark RA, Kraegeloh-Mann I, Mautner V-F. Pharmacotherapy of attention deficit in neurofibromatosis type 1: effects on cognition. Neuropediatrics (2014) 45:240–6.10.1055/s-0034-1368117 PubMed DOI
Conklin HM, Reddick WE, Ashford J, Ogg S, Howard SC, Morris EB, et al. Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. J Clin Oncol (2010) 28:4465–72.10.1200/JCO.2010.28.4026 PubMed DOI PMC
Devlin AM, Panagiotopoulos C. Metabolic side effects and pharmacogenetics of second-generation antipsychotics in children. Pharmacogenomics (2015) 16:981–96.10.2217/pgs.15.55 PubMed DOI
Groenman AP, Schweren LJS, Dietrich A, Hoekstra PJ. An update on the safety of psychostimulants for the treatment of attention-deficit/hyperactivity disorder. Expert Opin Drug Saf (2017) 16:455–64.10.1080/14740338.2017.1301928 PubMed DOI
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron (2013) 80:751–64.10.1016/j.neuron.2013.10.002 PubMed DOI PMC
Düzel E, Penny WD, Burgess N. Brain oscillations and memory. Curr Opin Neurobiol (2010) 20:143–9.10.1016/j.conb.2010.01.004 PubMed DOI
Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci (2014) 18:414–21.10.1016/j.tics.2014.04.012 PubMed DOI PMC
Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A (1998) 95:7092–6.10.1073/pnas.95.12.7092 PubMed DOI PMC
von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol (2000) 38:301–13.10.1016/S0167-8760(00)00172-0 PubMed DOI
Johnson EL, Dewar CD, Solbakk A-K, Endestad T, Meling TR, Knight RT. Bidirectional frontoparietal oscillatory systems support working memory. Curr Biol (2017) 27:1829.e–35.e.10.1016/j.cub.2017.05.046 PubMed DOI PMC
Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci (2005) 9:474–80.10.1016/j.tics.2005.08.011 PubMed DOI
Varela F, Lachaux J-P, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci (2001) 2:229–39.10.1038/35067550 PubMed DOI
Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci (2001) 2:704–16.10.1038/35094565 PubMed DOI
Mizuhara H, Wang L-Q, Kobayashi K, Yamaguchi Y. A long-range cortical network emerging with theta oscillation in a mental task. Neuroreport (2004) 15:1233–8.10.1097/01.wnr.0000126755.09715.b3 PubMed DOI
Engel AK, Fries P. Beta-band oscillations – signalling the status quo? Curr Opin Neurobiol (2010) 20:156–65.10.1016/j.conb.2010.02.015 PubMed DOI
Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci (2012) 16:606–17.10.1016/j.tics.2012.10.007 PubMed DOI PMC
Freunberger R, Werkle-Bergner M, Griesmayr B, Lindenberger U, Klimesch W. Brain oscillatory correlates of working memory constraints. Brain Res (2011) 1375:93–102.10.1016/j.brainres.2010.12.048 PubMed DOI
Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Frontal preparatory neural oscillations associated with cognitive control: a developmental study comparing young adults and adolescents. Neuroimage (2016) 136:139–48.10.1016/j.neuroimage.2016.05.017 PubMed DOI PMC
Cohen MX. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci (2014) 37:480–90.10.1016/j.tins.2014.06.004 PubMed DOI
Helfrich RF, Knight RT. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn Sci (2016) 20:916–30.10.1016/j.tics.2016.09.007 PubMed DOI PMC
Mathalon DH, Sohal VS. Neural oscillations and synchrony in brain dysfunction and neuropsychiatric disorders: it’s about time. JAMA Psychiatry (2015) 72:840–4.10.1001/jamapsychiatry.2015.0483 PubMed DOI
Singer W. Neuronal oscillations: unavoidable and useful? Eur J Neurosci (2017).10.1111/ejn.13796 PubMed DOI
Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron (2012) 75:963–80.10.1016/j.neuron.2012.09.004 PubMed DOI
Yahata N, Kasai K, Kawato M. Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry Clin Neurosci (2017) 71:215–37.10.1111/pcn.12502 PubMed DOI
Bluschke A, Broschwitz F, Kohl S, Roessner V, Beste C. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci Rep (2016) 6:31178.10.1038/srep31178 PubMed DOI PMC
Hammond DC. What is neurofeedback: an update. J Neurother (2011) 15:305–36.10.1080/10874208.2011.623090 DOI
Micoulaud-Franchi J-A, Geoffroy PA, Fond G, Lopez R, Bioulac S, Philip P. EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front Hum Neurosci (2014) 8:906.10.3389/fnhum.2014.00906 PubMed DOI PMC
Heinrich H, Busch K, Studer P, Erbe K, Moll GH, Kratz O. EEG spectral analysis of attention in ADHD: implications for neurofeedback training? Front Hum Neurosci (2014) 8:611.10.3389/fnhum.2014.00611 PubMed DOI PMC
Sonuga-Barke EJS, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am J Psychiatry (2013) 170:275–89.10.1176/appi.ajp.2012.12070991 PubMed DOI
Bluschke A, Roessner V, Beste C. Editorial perspective: how to optimise frequency band neurofeedback for ADHD. J Child Psychol Psychiatry (2016) 57:457–61.10.1111/jcpp.12521 PubMed DOI
Alvarez J, Meyer FL, Granoff DL, Lundy A. The effect of EEG biofeedback on reducing postcancer cognitive impairment. Integr Cancer Ther (2013) 12:475–87.10.1177/1534735413477192 PubMed DOI
Sterman MB, Egner T. Foundation and practice of neurofeedback for the treatment of epilepsy. Appl Psychophysiol Biofeedback (2006) 31:21–35.10.1007/s10484-006-9002-x PubMed DOI
Hammond DC. Treatment of chronic fatigue with neurofeedback and self-hypnosis. NeuroRehabilitation (2001) 16:295–300. PubMed
de Ruiter MA, Oosterlaan J, Schouten-van Meeteren AYN, Maurice-Stam H, van Vuurden DG, Gidding C, et al. Neurofeedback ineffective in paediatric brain tumour survivors: results of a double-blind randomised placebo-controlled trial. Eur J Cancer (2016) 64:62–73.10.1016/j.ejca.2016.04.020 PubMed DOI
Vosskuhl J, Strüber D, Herrmann CS. Transkranielle wechselstromstimulation. Nervenarzt (2015) 86:1516–22.10.1007/s00115-015-4317-6 PubMed DOI
Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol (2014) 96:42–7.10.1016/j.biopsycho.2013.11.006 PubMed DOI
Fregni F, Otachi PTM, Do Valle A, Boggio PS, Thut G, Rigonatti SP, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol (2006) 60:447–55.10.1002/ana.20950 PubMed DOI
Brittain J-S, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol (2013) 23:436–40.10.1016/j.cub.2013.01.068 PubMed DOI PMC
Jones KT, Peterson DJ, Blacker KJ, Berryhill ME. Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Res (2017) 1667:28–40.10.1016/j.brainres.2017.05.005 PubMed DOI PMC
Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimulat (2015) 8:76–87.10.1016/j.brs.2014.10.012 PubMed DOI PMC
Striefel S. Ethics in neurofeedback practice. In: Budzynski TH, Budzynski HK, Evans JR, Abarbanel A, editors. Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications. Oxford: Academic Press; (2009). p. 475–92.
Hammond DC, Kirk L. First, do no harm: adverse effects and the need for practice standards in neurofeedback. J Neurother (2008) 12:79–88.10.1080/10874200802219947 DOI
Rossiter TR. Patient-directed neurofeedback for AD/HD. J Neurother (1998) 2:54–64.10.1300/J184v02n04_04 DOI
Wei T-Y, Chang D-W, Liu Y-D, Liu C-W, Young C-P, Liang S-F, et al. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory. Biomed Eng Online (2017) 16:128.10.1186/s12938-017-0418-8 PubMed DOI PMC
Rogante M, Silvestri S, Grigioni M, Zampolini M. Electromyographic audio biofeedback for telerehabilitation in hospital. J Telemed Telecare (2010) 16:204–6.10.1258/jtt.2010.004012 PubMed DOI
Espay AJ, Baram Y, Dwivedi AK, Shukla R, Gartner M, Gaines L, et al. At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. J Rehabil Res Dev (2010) 47:573–81.10.1682/JRRD.2009.10.0165 PubMed DOI