Nanoparticle-Based Rifampicin Delivery System Development

. 2021 Apr 03 ; 26 (7) : . [epub] 20210403

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33916814

Grantová podpora
RP/CPS/2020/005 Ministry of Education, Youth and Sport of the Czech Republik- DKRVO

The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.

Zobrazit více v PubMed

Arca H.Ç., Mosquera-Giraldo L.I., Pereira J.M., Sriranganathan N., Taylor L.S., Edgar K.J. Rifampin stability and solution concentration enhancement through amorphous solid dispersion in cellulose ω-carboxyalkanoate matrices. J. Pharm. Sci. 2018;107:127–138. doi: 10.1016/j.xphs.2017.05.036. PubMed DOI

Reinbold J., Hierlemann T., Urich L., Uhde A.-K., Müller I., Weindl T., Vogel U., Schlensak C., Wendel H.P., Krajewski S. Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections. Drug Des. Dev. Ther. 2017;11:2753. doi: 10.2147/DDDT.S138510. PubMed DOI PMC

Lee C.-Y., Huang C.-H., Lu P.-L., Ko W.-C., Chen Y.-H., Hsueh P.-R. Role of rifampin for the treatment of bacterial infections other than mycobacteriosis. J. Infect. 2017;75:395–408. doi: 10.1016/j.jinf.2017.08.013. PubMed DOI

Chen W., Glackin C.A., Horwitz M.A., Zink J.I. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res. 2019;52:1531–1542. doi: 10.1021/acs.accounts.9b00116. PubMed DOI

Hakkimane S.S., Shenoy V.P., Gaonkar S.L., Bairy I., Guru B.R. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int. J. Nanomed. 2018;13:4303. doi: 10.2147/IJN.S163925. PubMed DOI PMC

Mishra P., Pawar R.-P., Bose D., Durgbanshi A., Albiol-Chiva J., Peris-Vicente J., Esteve-Romero J., Jain A. Stability studies of rifampicin in plasma and urine of tuberculosis patients according to the European Medicines Agency Guidelines. Bioanalysis. 2019;11:713–726. doi: 10.4155/bio-2018-0174. PubMed DOI

Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI

Rajaram S., Vemuri V.D., Natham R. Ascorbic acid improves stability and pharmacokinetics of rifampicin in the presence of isoniazid. J. Pharm. Biomed. Anal. 2014;100:103–108. doi: 10.1016/j.jpba.2014.07.027. PubMed DOI

Kruse C.R., Singh M., Targosinski S., Sinha I., Sørensen J.A., Eriksson E., Nuutila K. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair Regen. 2017;25:260–269. doi: 10.1111/wrr.12526. PubMed DOI

Vilchèze C., Kim J., Jacobs W.R. Vitamin C potentiates the killing of Mycobacterium tuberculosis by the first-line tuberculosis drugs isoniazid and rifampin in mice. Antimicrob. Agents Chemother. 2018;62:e02165-17. doi: 10.1128/AAC.02165-17. PubMed DOI PMC

Petkar K.C., Chavhan S., Kunda N., Saleem I., Somavarapu S., Taylor K.M., Sawant K.K. Development of novel octanoyl chitosan nanoparticles for improved rifampicin pulmonary delivery: Optimization by factorial design. Aaps Pharm. Sci. Tech. 2018;19:1758–1772. doi: 10.1208/s12249-018-0972-9. PubMed DOI

Mignani S., Tripathi R., Chen L., Caminade A.-M., Shi X., Majoral J.-P. New ways to treat tuberculosis using dendrimers as nanocarriers. Pharmaceutics. 2018;10:105. doi: 10.3390/pharmaceutics10030105. PubMed DOI PMC

Scolari I., Páez P., Musri M., Petiti J., Torres A., Granero G. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Deliv. Trans. Res. 2020:1–15. doi: 10.1007/s13346-019-00705-3. PubMed DOI

Chokshi N.V., Khatri H.N., Patel M.M. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev. Ind. Pharm. 2018;44:1975–1989. doi: 10.1080/03639045.2018.1506472. PubMed DOI

Ali H.R., Ali M.R., Wu Y., Selim S.A., Abdelaal H.F., Nasr E.A., El-Sayed M.A. Gold nanorods as drug delivery vehicles for rifampicin greatly improve the efficacy of combating Mycobacterium tuberculosis with good biocompatibility with the host cells. Bioconjugate Chem. 2016;27:2486–2492. doi: 10.1021/acs.bioconjchem.6b00430. PubMed DOI

Subramaniam S., Thomas N., Gustafsson H., Jambhrunkar M., Kidd S.P., Prestidge C.A. Rifampicin-Loaded Mesoporous Silica Nanoparticles for the Treatment of Intracellular Infections. Antibiotics. 2019;8:39. doi: 10.3390/antibiotics8020039. PubMed DOI PMC

Tarricone A., De La Mata K., Chen S., Krishnan P., Landau S., Soave R. Relationship Between pH Shifts and Rate of Healing in Chronic Nonhealing Venous Stasis Lower-Extremity Wounds. J. Foot. Ankle Surg. 2020;59:748–752. doi: 10.1053/j.jfas.2020.01.007. PubMed DOI

Jones E.M., Cochrane C.A., Percival S.L. The effect of pH on the extracellular matrix and biofilms. Adv. Would Care. 2015;4:431–439. doi: 10.1089/wound.2014.0538. PubMed DOI PMC

Mihai M.M., Dima M.B., Dima B., Holban A.M. Nanomaterials for Wound Healing and Infection Control. Materials. 2019;12:2176. doi: 10.3390/ma12132176. PubMed DOI PMC

Hu S., Bi S., Yan D., Zhou Z., Sun G., Cheng X., Chen X. Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydr. Polym. 2018;184:154–163. doi: 10.1016/j.carbpol.2017.12.033. PubMed DOI

Xun M.-M., Huang Z., Xiao Y.-P., Liu Y.-H., Zhang J., Zhang J.-H., Yu X.-Q. Synthesis and Properties of Low-Molecular-Weight PEI-Based Lipopolymers for Delivery of DNA. Polymers. 2018;10:1060. doi: 10.3390/polym10101060. PubMed DOI PMC

Gatti T.H.H., Eloy J.O., Ferreira L.M.B., Silva I.C., Pavan F.R., Gremião M.P.D., Chorilli M. Insulin-loaded polymeric mucoadhesive nanoparticles: Development, characterization and cytotoxicity evaluation. Braz. J. Pharm. Sci. 2018;54:1–10. doi: 10.1590/s2175-97902018000117314. DOI

Motiei M., Kashanian S., Lucia L.A., Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J. Control. Release. 2017;260:213–225. doi: 10.1016/j.jconrel.2017.06.010. PubMed DOI

Motiei M., Kashanian S., Taherpour A. Hydrophobic amino acids grafted onto chitosan: A novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev. Ind. Pharm. 2017;43:1–11. doi: 10.1080/03639045.2016.1254240. PubMed DOI

Motiei M., Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur. J. Pharm. Sci. 2017;99:285–291. doi: 10.1016/j.ejps.2016.12.035. PubMed DOI

Motiei M., Sedlařík V., Lucia L.A., Fei H., Münster L. Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr. Polym. 2020;231:115709. doi: 10.1016/j.carbpol.2019.115709. PubMed DOI

Motiei M., Kashanian S. Preparation of amphiphilic chitosan nanoparticles for controlled release of hydrophobic drugs. J. Nanosci. Nanotech. 2017;17:5226–5232. doi: 10.1166/jnn.2017.13844. DOI

Eaton P., Quaresma P., Soares C., Neves C., de Almeida M., Pereira E., West P. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy. 2017;182:179–190. doi: 10.1016/j.ultramic.2017.07.001. PubMed DOI

Fan W., Yan W., Xu Z., Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces. 2012;90:21–27. doi: 10.1016/j.colsurfb.2011.09.042. PubMed DOI

Zielińska A., Carreiró F., Oliveira A.M., Neves A., Pires B., Venkatesh D.N., Durazzo A., Lucarini M., Eder P., Silva A.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731. PubMed DOI PMC

Layek B., Singh J. Amino acid grafted chitosan for high performance gene delivery: Comparison of amino acid hydrophobicity on vector and polyplex characteristics. Biomacromolecules. 2013;14:485–494. doi: 10.1021/bm301720g. PubMed DOI

Selvakannan P., Mandal S., Phadtare S., Gole A., Pasricha R., Adyanthaya S., Sastry M. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interface Sci. 2004;269:97–102. doi: 10.1016/S0021-9797(03)00616-7. PubMed DOI

Vaca-Garcia C., Borredon M.-E., Gaseta A. Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose. 2001;8:225–231. doi: 10.1023/A:1013133921626. DOI

Chavan C., Bala P., Pal K., Kale S. Cross-linked chitosan-dextran sulphate vehicle system for controlled release of ciprofloxaxin drug: An ophthalmic application. OpenNano. 2017;2:28–36. doi: 10.1016/j.onano.2017.04.002. DOI

Nikolić G.S., Cakić M.D., Glišić S., Cvetković D.J., Mitić Ž.J., Marković D.Z. Fourier Transforms-High-Tech Application and Current Trends. InTech; London, UK: 2017. Study of Green Nanoparticles and Biocomplexes Based on Exopolysaccharide by Modern Fourier Transform Spectroscopy; pp. 149–174. DOI

Sumisha A., Arthanareeswaran G., Ismail A.F., Kumar D.P., Shankar M.V. Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv. 2015;5:39464–39473. doi: 10.1039/C5RA03520A. DOI

Kassem M., Ali A., El-Assal M., El-badrawy A. Formulation, characterization and in vivo application of oral insulin nanotechnology using different biodegradable polymers: Advanced drug delivery system. Int. J. Pharm. Sci. Res. 2018;9:3664–3677. doi: 10.21474/IJAR01/5863. DOI

Li H., Huo M., Zhou J., Dai Y., Deng Y., Shi X., Masoud J. Enhanced oral absorption of paclitaxel in N-deoxycholic acid-N, O-hydroxyethyl chitosan micellar system. J. Pharm. Sci. 2010;99:4543–4553. doi: 10.1002/jps.22159. PubMed DOI

Hefni H.H., Nagy M., Azab M.M., Hussein M.H. Esterification of chitosan with L-alanine and a study on their effect in removing the heavy metals and total organic carbon (TOC) from wastewater. Pure Appl. Chem. 2016;88:595–604. doi: 10.1515/pac-2016-0301. DOI

Guo J., Ren L., Wang R., Zhang C., Yang Y., Liu T. Water dispersible graphene noncovalently functionalized with tryptophan and its poly (vinyl alcohol) nanocomposite. Compos. Part B Eng. 2011;42:2130–2135. doi: 10.1016/j.compositesb.2011.05.008. DOI

Ge W., Li D., Chen M., Wang X., Liu S., Sun R. Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly (lactide) nanomicelles. Carbohydr. Polym. 2015;117:169–176. doi: 10.1016/j.carbpol.2014.09.056. PubMed DOI

Antoniraj M.G., Kumar C.S., Kandasamy R. Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid Polym. Sci. 2016;294:527–535. doi: 10.1007/s00396-015-3804-4. DOI

Steinmann W., Walter S., Beckers M., Seide G., Gries T. Thermal analysis of phase transitions and crystallization in polymeric fibers. Appl. Calor. Wide Cont. Differ. Scan. Calor. Isoth. Titra. Calor. Microcalor. 2013;12:279–305.

Dudhani A.R., Kosaraju S.L. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydr. Polym. 2010;81:243–251. doi: 10.1016/j.carbpol.2010.02.026. DOI

Righetti M.C. Crystallization of polymers investigated by temperature-modulated DSC. Materials. 2017;10:442. doi: 10.3390/ma10040442. PubMed DOI PMC

Vu H., Nair A., Tran L., Pal S., Senkowsky J., Hu W., Tang L. A Device to Predict Short-Term Healing Outcome of Chronic Wounds. Adv. Wound Care. 2020;9:312–324. doi: 10.1089/wound.2019.1064. PubMed DOI PMC

Becker C., Dressman J., Junginger H., Kopp S., Midha K., Shah V., Stavchansky S., Barends D. Biowaiver monographs for immediate release solid oral dosage forms: Rifampicin. J. Pharm. Sci. 2009;98:2252–2267. doi: 10.1002/jps.21624. PubMed DOI

Maniyar S.A., Jargar J.G., Das S.N., Dhundasi S.A., Das K.K. Alteration of chemical behavior of L–ascorbic acid in combination with nickel sulfate at different pH solutions in vitro. Asian Pac. J. Trop. Biomed. 2012;2:220–222. doi: 10.1016/S2221-1691(12)60045-8. PubMed DOI PMC

Acuña L., Hamadat S., Corbalán N.S., González-Lizárraga F., dos-Santos-Pereira M., Rocca J., Sepúlveda Díaz J., Del-Bel E., Papy-García D., Chehín R.N. Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells. 2019;8:776. doi: 10.3390/cells8080776. PubMed DOI PMC

Alves R., Reis T.V.S., Silva L.C.C., Storpírtis S., Mercuri L.P., Matos J.R. Thermal behavior and decomposition kinetics of rifampicin polymorphs under isothermal and non-isothermal conditions. Braz. J. Pharm. Sci. 2010;46:343–351. doi: 10.1590/S1984-82502010000200022. DOI

Levy R., Okun Z., Shpigelman A. The influence of chemical structure and the presence of ascorbic acid on anthocyanins stability and spectral properties in purified model systems. Foods. 2019;8:207. doi: 10.3390/foods8060207. PubMed DOI PMC

Amini Moghaddam M., Stloukal P., Kucharczyk P., Tow-Swiatek A., Garbacz T., Pummerova M., Klepka T., Sedlařík V. Microcellular antibacterial polylactide-based systems prepared by additive extrusion with ALUM. Polym. Adv. Tech. 2019;30:2100–2108. doi: 10.1002/pat.4643. DOI

Osorio-Madrazo A., David L., Trombotto S., Lucas J.-M., Peniche-Covas C., Domard A. Kinetics study of the solid-state acid hydrolysis of chitosan: Evolution of the crystallinity and macromolecular structure. Biomacromolecules. 2010;11:1376–1386. doi: 10.1021/bm1001685. PubMed DOI

Chen W., Cheng C.-A., Lee B.-Y., Clemens D.L., Huang W.-Y., Horwitz M.A., Zink J.I. Facile strategy enabling both high loading and high release amounts of the water-insoluble drug clofazimine using mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces. 2018;10:31870–31881. doi: 10.1021/acsami.8b09069. PubMed DOI

Tang F., Li L., Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012;24:1504–1534. doi: 10.1002/adma.201104763. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...