Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
29740157
PubMed Central
PMC5940690
DOI
10.1038/s41598-018-25598-z
PII: 10.1038/s41598-018-25598-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In order to explain the formation of low-temperature phases in stoichiometric Ni2MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.
Faculty of Mathematics and Physics Charles University Prague CZ 12116 Czech Republic
Institute of Physics Czech Academy of Sciences Prague CZ 18221 Czech Republic
Material Physics Laboratory Lappeenranta University of Technology Savonlinna FI 57170 Finland
See more in PubMed
Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 1996;69:1966–1968. doi: 10.1063/1.117637. DOI
Sozinov A, Lanska N, Soroka A, Zou W. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013;102:021902. doi: 10.1063/1.4775677. DOI
Soroka A, et al. Composition and temperature dependence of twinning stress in non-modulated martensite of Ni-Mn-Ga-Co-Cu magnetic shape memory alloys. Scripta Mater. 2018;144:52–55. doi: 10.1016/j.scriptamat.2017.09.046. DOI
Wuttig M, Li J, Craciunescu C. A new ferromagnetic shape memory alloy system. Scripta Mater. 2001;44:2393–2397. doi: 10.1016/S1359-6462(01)00939-3. DOI
Lavrov AN, Komiya S, Ando Y. Antiferromagnets: Magnetic shape-memory effects in a crystal. Nature. 2002;418:385–386. doi: 10.1038/418385a. PubMed DOI
Zayak AT, Entel P, Enkovaara J, Ayuela A, Nieminen R. First-principles investigation of phonon softenings and lattice instabilities in the shape-memory system Ni2MnGa. Phys. Rev. B. 2003;68:132402. doi: 10.1103/PhysRevB.68.132402. DOI
Entel P, et al. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D. 2006;39:865. doi: 10.1088/0022-3727/39/5/S13. DOI
Bungaro C, Rabe KM, Dal Corso A. First-principles study of lattice instabilities in ferromagnetic Ni2MnGa. Phys. Rev. B. 2003;68:134104. doi: 10.1103/PhysRevB.68.134104. DOI
Zayak AT, Adeagbo WA, Entel P, Rabe KM. e/a dependence of the lattice instability of cubic Heusler alloys from first principles. Appl. Phys. Lett. 2006;88:111903. doi: 10.1063/1.2185046. DOI
Fujii S, Ishida S, Asano S. Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn. J. Phys. Soc. Japan. 1989;58:3657–3665. doi: 10.1143/JPSJ.58.3657. DOI
Brown PJ, Bargawi AY, Crangle J, Neumann KU, Ziebeck KRA. Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys.: Condens. Matter. 1999;11:4715.
Kart SÖ, Uludoğan M, Karaman I, Çağin T. DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa. Phys. Stat. Solidi A. 2008;205:1026–1035. doi: 10.1002/pssa.200776453. DOI
Zelený M, Straka L, Sozinov A, Heczko O. Ab initio prediction of stable nanotwin double layers and 4O structure in Ni2MnGa. Phys. Rev. B. 2016;94:224108. doi: 10.1103/PhysRevB.94.224108. DOI
Uijttewaal MA, Hickel T, Neugebauer J, Gruner ME, Entel P. Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. Phys. Rev. Lett. 2009;102:035702. doi: 10.1103/PhysRevLett.102.035702. PubMed DOI
Entel P, et al. Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. Eur. Phys. J. B. 2013;86:65. doi: 10.1140/epjb/e2012-30936-9. DOI
Dutta B, et al. Ab initio prediction of martensitic and intermartensitic phase boundaries in Ni-Mn-Ga. Phys. Rev. Lett. 2016;116:025503. doi: 10.1103/PhysRevLett.116.025503. PubMed DOI
Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012;136:074103. doi: 10.1063/1.3684549. PubMed DOI
Kaufmann S, et al. Adaptive modulations of martensites. Phys. Rev. Lett. 2010;104:145702. doi: 10.1103/PhysRevLett.104.145702. PubMed DOI
Kaufmann S, et al. Modulated martensite: why it forms and why it deforms easily. New J. Phys. 2011;13:053029. doi: 10.1088/1367-2630/13/5/053029. DOI
Khachaturyan AG, Shapiro SM, Semenovskaya S. Adaptive phase formation in martensitic transformation. Phys. Rev. B. 1991;43:10832–10843. doi: 10.1103/PhysRevB.43.10832. PubMed DOI
Niemann R, Fähler S. Geometry of adaptive martensite in Ni-Mn-based heusler alloys. J. Alloys. Compd. 2017;703:280–288. doi: 10.1016/j.jallcom.2017.01.189. DOI
Pond R, Muntifering B, Müllner P. Deformation twinning in Ni2MnGa. Acta Mater. 2012;60:3976–3984. doi: 10.1016/j.actamat.2012.03.045. DOI
Opeil CP, et al. Combined experimental and theoretical investigation of the premartensitic transition in Ni2MnGa. Phys. Rev. Lett. 2008;100:165703. doi: 10.1103/PhysRevLett.100.165703. PubMed DOI
Niemann R, et al. Nucleation and growth of hierarchical martensite in epitaxial shape memory films. Acta Mater. 2017;132:327–334. doi: 10.1016/j.actamat.2017.04.032. DOI
Straka L, et al. Orthorhombic intermediate phase originating from {110} nanotwinning in Ni50.0Mn28.7Ga21.3 modulated martensite. Acta Mater. 2017;132:335–344. doi: 10.1016/j.actamat.2017.04.048. DOI
Zelený M, Straka L, Sozinov A. Ab initio study of Ni2MnGa under shear deformation. MATEC Web of Conferences. 2015;33:05006. doi: 10.1051/matecconf/20153305006. DOI
Jahnátek M, Hafner J, Krajčí M. Shear deformation, ideal strength, and stacking fault formation of fcc metals: A density-functional study of Al and Cu. Phys. Rev. B. 2009;79:224103. doi: 10.1103/PhysRevB.79.224103. DOI
Gruner, M. E. et al. Modulations in martensitic Heusler alloys originate from nanotwin ordering. ArXiv e-prints (2017). PubMed PMC
Seiner H, et al. The effect of antiphase boundaries on the elastic properties of Ni-Mn-Ga austenite and premartensite. J. Phys.: Condens. Matter. 2013;25:425402. PubMed
Seiner H, Kopecký V, Landa M, Heczko O. Elasticity and magnetism of Ni2MnGa premartensitic tweed. Phys. Status Solidi (b) 2014;251:2097–2103. doi: 10.1002/pssb.201350415. DOI
Albertini F, et al. Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z (x + y + z = 0) Heusler alloys. Appl. Phys. Lett. 2002;81:4032–4034. doi: 10.1063/1.1525071. DOI
Brown PJ, et al. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys.: Condens. Matter. 2002;14:10159.
Righi L, Albertini F, Pareti L, Paoluzi A, Calestani G. Commensurate and incommensurate “5M” modulated crystal structures in Ni-Mn-Ga martensitic phases. Acta Mater. 2007;55:5237–5245. doi: 10.1016/j.actamat.2007.05.040. DOI
Singh S, Barman SR, Pandey D. Incommensurate modulations in stoichiometric Ni2MnGa ferromagnetic shape memory alloy: an overview. Z. Kristallogr. Cryst. Mater. 2014;230:13–22.
Heczko O, Cejpek P, Drahokoupil J, Holý V. Structure and microstructure of Ni-Mn-Ga single crystal exhibiting magnetic shape memory effect analysed by high resolution X-ray diffraction. Acta Mater. 2016;115:250–258. doi: 10.1016/j.actamat.2016.05.047. DOI
Ustinov A, Olikhovska L, Glavatska N, Glavatskyy I. Diffraction features due to ordered distribution of twin boundaries in orthorhombic Ni-Mn-Ga crystals. J. Appl. Crystallogr. 2009;42:211–216. doi: 10.1107/S0021889809007171. DOI
Richard M, et al. Crystal structure and transformation behavior of Ni-Mn-Ga martensites. Scr. Mater. 2006;54:1797–1801. doi: 10.1016/j.scriptamat.2006.01.033. DOI
Zayak AT, Entel P, Rabe KM, Adeagbo WA, Acet M. Crystal structures of Ni2MnGa from density functional calculations. Phys. Rev. B. 2005;72:054113. doi: 10.1103/PhysRevB.72.054113. DOI
Enkovaara J, Heczko O, Ayuela A, Nieminen RM. Coexistence of ferromagnetic and antiferromagnetic order in mn-doped Ni2MnGa. Phys. Rev. B. 2003;67:212405. doi: 10.1103/PhysRevB.67.212405. DOI
Zelený M, Sozinov A, Straka L, Björkman T, Nieminen RM. First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path. Phys. Rev. B. 2014;89:184103. doi: 10.1103/PhysRevB.89.184103. DOI
Heczko O, et al. Temperature dependence of elastic properties in austenite and martensite of Ni-Mn-Ga epitaxial films. Acta Mater. 2018;145:298–305. doi: 10.1016/j.actamat.2017.12.011. DOI
Salazar Mejía C, et al. Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy. Phys. Rev. B. 2018;97:094410. doi: 10.1103/PhysRevB.97.094410. DOI
Hickel T, et al. Ab initio-based prediction of phase diagrams: Application to magnetic shape memory alloys. Adv. Eng. Mater. 2012;14:547–561. doi: 10.1002/adem.201200092. DOI
Siewert M, et al. Designing shape-memory Heusler alloys from first-principles. Appl. Phys. Lett. 2011;99:191904. doi: 10.1063/1.3655905. DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). Errata: 78, 1396(E), 1997. PubMed
Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 1989;40:3616–3621. doi: 10.1103/PhysRevB.40.3616. PubMed DOI
Larsen, A. H. et al. The Atomic Simulation Environment—A Python library for working with atoms. J. Phys.: Condens. Matter29, 273002 (2017). PubMed