Effect of Twinning on Angle-Resolved Photoemission Spectroscopy Analysis of Ni49.7Mn29.1Ga21.2(100) Heusler Alloy

. 2022 Jan 18 ; 15 (3) : . [epub] 20220118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160661

Grantová podpora
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760 Ministry of Education Youth and Sports
19-13310S Czech Science Foundation

To explain the observed features of k-space photoelectron images taken on off-stoichiometric Heusler Ni49.7Mn29.1Ga21.2 single-crystals in the cubic austenitic and pseudotetragonal martensitic phases, the images were simulated theoretically. Despite the moderate structural difference of both phases, there is large difference in photoemission spectra. Analysis of the final states' structure, matrix elements, and interface barrier scattering was performed to interpret discrepancies between the external photoemission of the austenite and martensite. The missing signal at the surface-normal emission of the martensitic phase is, ultimately, explained by repeated scatterings of escaping electrons on the interfaces between nanotwins.

Zobrazit více v PubMed

Jungwirth T., Marti X., Wadley P., Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI

Nayak A.K., Kumar V., Ma T., Werner P., Pippel E., Sahoo R., Damay F., Rößler U.K., Felser C., Parkin S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017;548:561–566. doi: 10.1038/nature23466. PubMed DOI

Webster P.J., Ziebeck K.R.A., Town S.L., Peak M.S. Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. B. 1984;49:295–310. doi: 10.1080/13642817408246515. DOI

Sozinov A., Likhachev A.A., Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 2002;80:1746–1748. doi: 10.1063/1.1458075. DOI

Niemann R., Rößler U.K., Gruner M.E., Heczko O., Schultz L., Fähler S. The Role of Adaptive Martensite in Magnetic Shape Memory Alloys. Adv. Eng. Mater. 2012;14:562–581. doi: 10.1002/adem.201200058. DOI

Gregg J.F., Allen W., Ounadjela K., Viret M., Hehn M., Thompson S.M., Coey J.M.D. Giant Magnetoresistive Effects in a Single Element Magnetic Thin Film. Phys. Rev. Lett. 1996;77:1580–1583. doi: 10.1103/PhysRevLett.77.1580. PubMed DOI

Thomas M., Heczko O., Buschbeck J., Rößler U.K., Mccord J., Scheerbaum N., Schultz L., Fähler S. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO(001) New J. Phys. 2008;10:023040. doi: 10.1088/1367-2630/10/2/023040. DOI

Dunand D.C., Müllner P. Size Effects on Magnetic Actuation in Ni-Mn-Ga Shape-Memory Alloys. Adv. Mater. 2010;23:216–232. doi: 10.1002/adma.201002753. PubMed DOI

Entel P., Buchelnikov V.D., Gruner M.E., Hucht A., Khovailo V.V., Nayak S.K., Zayak A.T. Shape Memory Alloys: A Summary of Recent Achievements. Mater. Sci. Forum. 2008;583:21–41. doi: 10.4028/www.scientific.net/MSF.583.21. DOI

Lee Y., Rhee J.Y., Harmon B.N. Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa. Phys. Rev. B. 2002;66:054424. doi: 10.1103/PhysRevB.66.054424. DOI

Polyak Y., Drchal V., Kudrnovský J., Heczko O., Honolka J., Cháb V., Kopeček J., Lančok J. Band mapping of the weakly off-stoichiometric Heusler alloy Ni49.7Mn29.1Ga21.2 in the austenitic phase. Phys. Rev. B. 2015;91:165115. doi: 10.1103/PhysRevB.91.165115. DOI

Heczko O., Drchal V., Cichoň S., Fekete L., Kudrnovský J., Kratochvílová I., Lančok J., Cháb V. Electronic structure in the twinned 10M martensite phase of the Ni49.7Mn29.1Ga21.2 Heusler alloy: Experiment and theory. Phys. Rev. B. 2018;98:184407. doi: 10.1103/PhysRevB.98.184407. DOI

Turek I., Drchal V., Kudrnovský J., Šob M., Weinberger P. Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Kluwer Academic Publishers; Boston, MA, USA: 1997.

Bhattacharya K. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect? Oxford University Press; Oxford, UK: 2012.

Heczko O., Straka L., Seiner H. Different microstructures of mobile twin boundaries in 10 M modulated Ni–Mn–Ga martensite. Acta Mater. 2013;61:622–631. doi: 10.1016/j.actamat.2012.10.007. DOI

Horáková K., Cháb V., Heczko O., Drchal V., Fekete L., Honolka J., Kopeček J., Kudrnovský J., Polyak Y., Sajdl P., et al. Surface analysis of the Heusler Ni49.7Mn29.1Ga21.2 Alloy: The composition, phase transition, and twinned microstructure of martensite. J. Appl. Phys. 2016;120:113905. doi: 10.1063/1.4962648. DOI

Bungaro C., Rabe K.M., Corso A.D. First-principles study of lattice instabilities in ferromagnetic Ni2MnGa. Phys. Rev. B. 2003;68:134104. doi: 10.1103/PhysRevB.68.134104. DOI

Zeng M., Cai M.-Q., Or S.W., Chan H.L.W. Anisotropy of the electrical transport properties in a Ni2MnGa single crystal: Experiment and theory. J. Appl. Phys. 2010;107:083713. doi: 10.1063/1.3354105. DOI

Adawi I. Theory of the Surface Photoelectric Effect for One and Two Photons. Phys. Rev. 1964;134:A788. doi: 10.1103/PhysRev.134.A788. DOI

Krasovskii E.E., Strocov V.N., Barrett N., Berger H., Schattke W., Claessen R. Band mapping in the one-step photoemission theory: Multi-Bloch-wave structure of final states and interference effects. Phys. Rev. B. 2007;75:045432. doi: 10.1103/PhysRevB.75.045432. DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Ridzel O.Y., Astašauskas V., Werner W.S.M. Low energy (1–100 eV) electron inelastic mean free path (IMFP) values determined from analysis of secondary electron yields (SEY) in the incident energy range of 0.1–10 keV. J. Electron Spectrosc. Relat. Phenom. 2020;241:146824. doi: 10.1016/j.elspec.2019.02.003. DOI

Nguyen-Truong H.T. Low-energy electron inelastic mean free path in materials. Appl. Phys. Lett. 2016;108:172901. doi: 10.1063/1.4948248. DOI

Powell C.J. Practical guide for inelastic mean free paths, effective attenuation lengths, mean escape depths, and information depths in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 2020;38:023209. doi: 10.1116/1.5141079. DOI

Straka L., Heczko O., Seiner H., Lanska N., Drahokoupil J., Soroka A., Fähler S., Hänninen H., Sozinov A. Highly mobile twinned interface in 10M modulated Ni–Mn–Ga martensite: Analysis beyond the tetragonal approximation of lattice. Acta Mater. 2011;59:7450–7463. doi: 10.1016/j.actamat.2011.09.020. DOI

Straka L., Heczko O., Hänninen H. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment. Acta Mater. 2008;56:5492–5499. doi: 10.1016/j.actamat.2008.07.020. DOI

Heczko O. Magnetic shape memory effect and highly mobile twin boundaries. Mater. Sci. Technol. 2014;30:1559–1578. doi: 10.1179/1743284714Y.0000000599. DOI

Pons J., Chernenko V., Santamarta R., Cesari E. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater. 2000;48:3027–3038. doi: 10.1016/S1359-6454(00)00130-0. DOI

Kaufmann S., Rößler U.K., Heczko O., Wuttig M., Buschbeck J., Schultz L., Fähler S. Adaptive Modulations of Martensites. Phys. Rev. Lett. 2010;104:145702. doi: 10.1103/PhysRevLett.104.145702. PubMed DOI

James R., Hane K. Martensitic transformations and shape-memory materials. Acta Mater. 2000;48:197–222. doi: 10.1016/S1359-6454(99)00295-5. DOI

Zelený M., Straka L., Sozinov A., Heczko O. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-25598-z. PubMed DOI PMC

Zelený M., Straka L., Sozinov A., Heczko O. Ab initio prediction of stable nanotwin double layers and 4O structure in Ni2MnGa. Phys. Rev. B. 2016;94:224108. doi: 10.1103/PhysRevB.94.224108. DOI

Ge Y., Zárubová N., Heczko O., Hannula S.-P. Stress-induced transition from modulated 14M to non-modulated martensite in Ni–Mn–Ga alloy. Acta Mater. 2015;90:151–160. doi: 10.1016/j.actamat.2015.02.028. DOI

Wende H., Freeland J.W., Chakarian V., Idzerda Y.U., Lemke L., Baberschke K. Probing local magnetic disorder by investigating spin dependent photoelectron scattering. J. Appl. Phys. 1998;83:7028–7030. doi: 10.1063/1.367841. DOI

Schwabe S., Niemann R., Backen A., Wolf D., Damm C., Walter T., Seiner H., Heczko O., Nielsch K., Fähler S. Building Hierarchical Martensite. Adv. Funct. Mater. 2020;31:2005715. doi: 10.1002/adfm.202005715. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...