Effect of Twinning on Angle-Resolved Photoemission Spectroscopy Analysis of Ni49.7Mn29.1Ga21.2(100) Heusler Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education Youth and Sports
19-13310S
Czech Science Foundation
PubMed
35160661
PubMed Central
PMC8837013
DOI
10.3390/ma15030717
PII: ma15030717
Knihovny.cz E-zdroje
- Klíčová slova
- Heusler alloys, band structure, ferromagnetism, martensite, photoemission spectroscopy, shape memory, twinning,
- Publikační typ
- časopisecké články MeSH
To explain the observed features of k-space photoelectron images taken on off-stoichiometric Heusler Ni49.7Mn29.1Ga21.2 single-crystals in the cubic austenitic and pseudotetragonal martensitic phases, the images were simulated theoretically. Despite the moderate structural difference of both phases, there is large difference in photoemission spectra. Analysis of the final states' structure, matrix elements, and interface barrier scattering was performed to interpret discrepancies between the external photoemission of the austenite and martensite. The missing signal at the surface-normal emission of the martensitic phase is, ultimately, explained by repeated scatterings of escaping electrons on the interfaces between nanotwins.
Zobrazit více v PubMed
Jungwirth T., Marti X., Wadley P., Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Nayak A.K., Kumar V., Ma T., Werner P., Pippel E., Sahoo R., Damay F., Rößler U.K., Felser C., Parkin S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017;548:561–566. doi: 10.1038/nature23466. PubMed DOI
Webster P.J., Ziebeck K.R.A., Town S.L., Peak M.S. Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. B. 1984;49:295–310. doi: 10.1080/13642817408246515. DOI
Sozinov A., Likhachev A.A., Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 2002;80:1746–1748. doi: 10.1063/1.1458075. DOI
Niemann R., Rößler U.K., Gruner M.E., Heczko O., Schultz L., Fähler S. The Role of Adaptive Martensite in Magnetic Shape Memory Alloys. Adv. Eng. Mater. 2012;14:562–581. doi: 10.1002/adem.201200058. DOI
Gregg J.F., Allen W., Ounadjela K., Viret M., Hehn M., Thompson S.M., Coey J.M.D. Giant Magnetoresistive Effects in a Single Element Magnetic Thin Film. Phys. Rev. Lett. 1996;77:1580–1583. doi: 10.1103/PhysRevLett.77.1580. PubMed DOI
Thomas M., Heczko O., Buschbeck J., Rößler U.K., Mccord J., Scheerbaum N., Schultz L., Fähler S. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO(001) New J. Phys. 2008;10:023040. doi: 10.1088/1367-2630/10/2/023040. DOI
Dunand D.C., Müllner P. Size Effects on Magnetic Actuation in Ni-Mn-Ga Shape-Memory Alloys. Adv. Mater. 2010;23:216–232. doi: 10.1002/adma.201002753. PubMed DOI
Entel P., Buchelnikov V.D., Gruner M.E., Hucht A., Khovailo V.V., Nayak S.K., Zayak A.T. Shape Memory Alloys: A Summary of Recent Achievements. Mater. Sci. Forum. 2008;583:21–41. doi: 10.4028/www.scientific.net/MSF.583.21. DOI
Lee Y., Rhee J.Y., Harmon B.N. Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa. Phys. Rev. B. 2002;66:054424. doi: 10.1103/PhysRevB.66.054424. DOI
Polyak Y., Drchal V., Kudrnovský J., Heczko O., Honolka J., Cháb V., Kopeček J., Lančok J. Band mapping of the weakly off-stoichiometric Heusler alloy Ni49.7Mn29.1Ga21.2 in the austenitic phase. Phys. Rev. B. 2015;91:165115. doi: 10.1103/PhysRevB.91.165115. DOI
Heczko O., Drchal V., Cichoň S., Fekete L., Kudrnovský J., Kratochvílová I., Lančok J., Cháb V. Electronic structure in the twinned 10M martensite phase of the Ni49.7Mn29.1Ga21.2 Heusler alloy: Experiment and theory. Phys. Rev. B. 2018;98:184407. doi: 10.1103/PhysRevB.98.184407. DOI
Turek I., Drchal V., Kudrnovský J., Šob M., Weinberger P. Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Kluwer Academic Publishers; Boston, MA, USA: 1997.
Bhattacharya K. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect? Oxford University Press; Oxford, UK: 2012.
Heczko O., Straka L., Seiner H. Different microstructures of mobile twin boundaries in 10 M modulated Ni–Mn–Ga martensite. Acta Mater. 2013;61:622–631. doi: 10.1016/j.actamat.2012.10.007. DOI
Horáková K., Cháb V., Heczko O., Drchal V., Fekete L., Honolka J., Kopeček J., Kudrnovský J., Polyak Y., Sajdl P., et al. Surface analysis of the Heusler Ni49.7Mn29.1Ga21.2 Alloy: The composition, phase transition, and twinned microstructure of martensite. J. Appl. Phys. 2016;120:113905. doi: 10.1063/1.4962648. DOI
Bungaro C., Rabe K.M., Corso A.D. First-principles study of lattice instabilities in ferromagnetic Ni2MnGa. Phys. Rev. B. 2003;68:134104. doi: 10.1103/PhysRevB.68.134104. DOI
Zeng M., Cai M.-Q., Or S.W., Chan H.L.W. Anisotropy of the electrical transport properties in a Ni2MnGa single crystal: Experiment and theory. J. Appl. Phys. 2010;107:083713. doi: 10.1063/1.3354105. DOI
Adawi I. Theory of the Surface Photoelectric Effect for One and Two Photons. Phys. Rev. 1964;134:A788. doi: 10.1103/PhysRev.134.A788. DOI
Krasovskii E.E., Strocov V.N., Barrett N., Berger H., Schattke W., Claessen R. Band mapping in the one-step photoemission theory: Multi-Bloch-wave structure of final states and interference effects. Phys. Rev. B. 2007;75:045432. doi: 10.1103/PhysRevB.75.045432. DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Ridzel O.Y., Astašauskas V., Werner W.S.M. Low energy (1–100 eV) electron inelastic mean free path (IMFP) values determined from analysis of secondary electron yields (SEY) in the incident energy range of 0.1–10 keV. J. Electron Spectrosc. Relat. Phenom. 2020;241:146824. doi: 10.1016/j.elspec.2019.02.003. DOI
Nguyen-Truong H.T. Low-energy electron inelastic mean free path in materials. Appl. Phys. Lett. 2016;108:172901. doi: 10.1063/1.4948248. DOI
Powell C.J. Practical guide for inelastic mean free paths, effective attenuation lengths, mean escape depths, and information depths in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 2020;38:023209. doi: 10.1116/1.5141079. DOI
Straka L., Heczko O., Seiner H., Lanska N., Drahokoupil J., Soroka A., Fähler S., Hänninen H., Sozinov A. Highly mobile twinned interface in 10M modulated Ni–Mn–Ga martensite: Analysis beyond the tetragonal approximation of lattice. Acta Mater. 2011;59:7450–7463. doi: 10.1016/j.actamat.2011.09.020. DOI
Straka L., Heczko O., Hänninen H. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment. Acta Mater. 2008;56:5492–5499. doi: 10.1016/j.actamat.2008.07.020. DOI
Heczko O. Magnetic shape memory effect and highly mobile twin boundaries. Mater. Sci. Technol. 2014;30:1559–1578. doi: 10.1179/1743284714Y.0000000599. DOI
Pons J., Chernenko V., Santamarta R., Cesari E. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater. 2000;48:3027–3038. doi: 10.1016/S1359-6454(00)00130-0. DOI
Kaufmann S., Rößler U.K., Heczko O., Wuttig M., Buschbeck J., Schultz L., Fähler S. Adaptive Modulations of Martensites. Phys. Rev. Lett. 2010;104:145702. doi: 10.1103/PhysRevLett.104.145702. PubMed DOI
James R., Hane K. Martensitic transformations and shape-memory materials. Acta Mater. 2000;48:197–222. doi: 10.1016/S1359-6454(99)00295-5. DOI
Zelený M., Straka L., Sozinov A., Heczko O. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-25598-z. PubMed DOI PMC
Zelený M., Straka L., Sozinov A., Heczko O. Ab initio prediction of stable nanotwin double layers and 4O structure in Ni2MnGa. Phys. Rev. B. 2016;94:224108. doi: 10.1103/PhysRevB.94.224108. DOI
Ge Y., Zárubová N., Heczko O., Hannula S.-P. Stress-induced transition from modulated 14M to non-modulated martensite in Ni–Mn–Ga alloy. Acta Mater. 2015;90:151–160. doi: 10.1016/j.actamat.2015.02.028. DOI
Wende H., Freeland J.W., Chakarian V., Idzerda Y.U., Lemke L., Baberschke K. Probing local magnetic disorder by investigating spin dependent photoelectron scattering. J. Appl. Phys. 1998;83:7028–7030. doi: 10.1063/1.367841. DOI
Schwabe S., Niemann R., Backen A., Wolf D., Damm C., Walter T., Seiner H., Heczko O., Nielsch K., Fähler S. Building Hierarchical Martensite. Adv. Funct. Mater. 2020;31:2005715. doi: 10.1002/adfm.202005715. DOI