Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TA02010672
Technology Agency of the Czech Republic
17-01995s
Grant Agency of the Czech Republi
RVO 68081715
Grant Agency of the Czech Republi
Institute of Analytical Chemistry
Czech Academy of Sciences
PubMed
29742317
DOI
10.1002/jssc.201800248
Knihovny.cz E-zdroje
- Klíčová slova
- Förster resonance energy transfer, capillary electrophoresis, nucleic acids, quantum dots, sensors,
- Publikační typ
- časopisecké články MeSH
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.
Center for Applied Genomics of Solid Tumors Genomac Research Institute Prague Czech Republic
Department of Analytical Chemistry Faculty of Sciences Charles University Prague Czech Republic
Faculty of Science Masaryk University Brno Czech Republic
Institute of Analytical Chemistry of the CAS v v i Brno Czech Republic
Zobrazit více v PubMed
Blanco-Canosa, J. B., Wu, M., Susumu, K., Petryayeva, E., Jennings, T. L., Dawson, P. E., Algar, W. R., Medintz, I. L., Recent progress in the bioconjugation of quantum dots. Coordin. Chem. Rev. 2014, 263, 101-137.
Petryayeva, E., Algar, W. R., Medintz, I. L., Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013, 67, 215-252.
Klostranec, J. M., Chan, W. C. W., Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater. 2006, 18, 1953-1964.
Sang, F. M., Huang, X. Y., Ren, J. C., Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis. Electrophoresis 2014, 35, 793-803.
Voracova, I., Kleparnik, K., Liskova, M., Foret, F., Determination of zeta-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis 2015, 36, 867-874.
Wang, J. H., Li, J. C., Wang, J. P., Liu, L., Li, J. P., Qin, H. F., Ding, S. M., Fu, M. L., Ji, J. L., Jiang, P. J., Qiu, L., Simultaneous monitoring of quantum dots and their assembly and disassembly with PreScission protease using capillary electrophoresis with fluorescence detection. J. Sep. Sci. 2016, 39, 1785-1791.
Liskova, M., Voracova, I., Kleparnik, K., Hezinova, V., Prikryl, J., Foret, F., Conjugation reactions in the preparations of quantum dot-based immunoluminescent probes for analysis of proteins by capillary electrophoresis. Anal. Bioanal. Chem. 2011, 400, 369-379.
Kleparnik, K., Voracova, I., Liskova, M., Prikryi, J., Hezinova, V., Foret, F., Capillary electrophoresis immunoassays with conjugated quantum dots. Electrophoresis 2011, 32, 1217-1223.
Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., Seifalian, A. M., Biological applications of quantum dots. Biomaterials 2007, 28, 4717-4732.
Algar, W. R., Krull, U. J., Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal. Bioanal. Chem. 2008, 391, 1609-1618.
Wang, J. H., Fan, J., Li, J. C., Liu, L., Wang, J. P., Jiang, P. J., Liu, X. Q., Qiu, L., In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Forster resonance energy transfer. J. Sep. Sci. 2017, 40, 933-939.
Forster, T., Energiewanderung Und Fluoreszenz. Naturwissenschaften 1946, 33, 166-175.
Lakowicz, J., Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York 1999.
Sapsford, K. E., Berti, L., Medintz, I. L., Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem. Int. Edit. 2006, 45, 4562-4588.
Noor, M. O., Petryayeva, E., Tavares, A. J., Uddayasankar, U., Algar, W. R., Krull, U. J., Building from the “Ground” Up: developing interfacial chemistry for solid-phase nucleic acid hybridization assays based on quantum dots and fluorescence resonance energy transfer. Coordin. Chem. Rev. 2014, 263, 25-52.
Stanisavljevic, M., Krizkova, S., Vaculovicova, M., Kizek, R., Adam, V., Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015, 74, 562-574.
Zhang, C. Y., Yeh, H. C., Kuroki, M. T., Wang, T. H., Single-quantum-dot-based DNA nanosensor. Nat. Mater. 2005, 4, 826-831.
Hermanson, G. T., Bioconjugate Techniques, Academic Press, San Diego 1996.
Algar, W. R., Krull, U. J., Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal. Chem. 2010, 82, 400-405.
Shahmuradyan, A., Krull, U. J., Intrinsically labeled fluorescent oligonucleotide probes on quantum dots for transduction of nucleic acid hybridization. Anal. Chem. 2016, 88, 3186-3193.
Jiang, J. F., Peng, Z. H., Deng, L., Li, G., Chen, L. L., Detection of Bifidobacterium species-specific 16S rDNA based on QD FRET bioprobe. J. Fluoresc. 2010, 20, 365-369.
Algar, W. R., Krull, U. J., Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates. Langmuir 2006, 22, 11346-11352.
Katz, E., Willner, I., Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Edit. 2004, 43, 6042-6108.
Gill, R., Willner, I., Shweky, I., Banin, U., Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J. Phys. Chem. B 2005, 109, 23715-23719.
Pons, T., Uyeda, H. T., Medintz, I. L., Mattoussi, H., Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J. Phys. Chem. B 2006, 110, 20308-20316.
Kim, Y. P., Shon, H. K., Shin, S. K., Lee, T. G., Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry. Mass. Spectrom. Rev. 2015, 34, 237-247.
Min, H., Kim, Y., Yu, H., Moon, D. W., Lim, S. J., Yoon, H. J., Lee, T. G., Shin, S. K., Probing the surface of organic and bioconjugated nanocrystals by using mass spectrometric imaging. Chem-Eur. J. 2008, 14, 8461-8464.
Pyell, U., Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 2010, 31, 814-831.
Kaiser, U., de Aberasturi, D. J., Vazquez-Gonzalez, M., Carrillo-Carrion, C., Niebling, T., Parak, W. J., Heimbrodt, W., Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Forster resonant energy transfer assemblies. J. Appl. Phys. 2015, 117.
Clapp, A. R., Medintz, I. L., Mauro, J. M., Fisher, B. R., Bawendi, M. G., Mattoussi, H., Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 2004, 126, 301-310.
Yakovlev, A. V., Zhang, F., Zulqurnain, A., Azhar-Zahoor, A., Luccardini, C., Gaillard, S., Mallet, J. M., Tauc, P., Brochon, J. C., Parak, W. J., Feltz, A., Oheim, M., Wrapping nanocrystals with an amphiphilic polymer preloaded with fixed amounts of fluorophore generates FRET-based nanoprobes with a controlled donor/acceptor ratio. Langmuir 2009, 25, 3232-3239.
Kleparnik, K., Datinska, V., Voracova, I., Liskova, M., Analysis of quantum dots and their conjugates by capillary electrophoresis with detection of laser-induced luminescence. Quant. Dots 2014, 1199, 33-54.
Rogach, A. L., Katsikas, L., Kornowski, A., Su, D. S., Eychmuller, A., Weller, H., Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber. Bunsen. Phys. Chem. 1996, 100, 1772-1778.
Su, Y. Y., He, Y., Lu, H. T., Sai, L. M., Li, Q. N., Li, W. X., Wang, L. H., Shen, P. P., Huang, Q., Fan, C. H., The cytotoxicity of cadmium based, aqueous phase - Synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009, 30, 19-25.
Rajh, T., Micic, O. I., Nozik, A. J., Synthesis and characterization of surface-modified colloidal Cdte quantum dots. J. Phys. Chem. 1993, 97, 11999-12003.
Bodnar, J., Hajba, L., Guttman, A., A fully automated linear polyacrylamide coating and regeneration method for capillary electrophoresis of proteins. Electrophoresis 2016, 37, 3154-3159.
Clapp, A. R., Medintz, I. L., Mattoussi, H., Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 2006, 7, 47-57.
Dale, R. E., The orientational freedom of molecular probes: the orietation factor in intramolecular energy transfer. Biophys. J. 1980, 30, 365-365.
Eaton, D. F., Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107-1114.
Petryayeva, E., Algar, W. R., Krull, U. J., Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format. Langmuir 2013, 29, 977-987.