Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't
PubMed
29750188
PubMed Central
PMC5943057
DOI
10.1126/sciadv.aap7314
PII: aap7314
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Polycyclic aromatic hydrocarbons like benzo(a)pyrene (BaP) in atmospheric particulate matter pose a threat to human health because of their high carcinogenicity. In the atmosphere, BaP is mainly degraded through a multiphase reaction with ozone, but the fate and atmospheric transport of BaP are poorly characterized. Earlier modeling studies used reaction rate coefficients determined in laboratory experiments at room temperature, which may overestimate/underestimate degradation rates when applied under atmospheric conditions. Moreover, the effects of diffusion on the particle bulk are not well constrained, leading to large discrepancies between model results and observations. We show how regional and global distributions and transport of BaP can be explained by a new kinetic scheme that provides a realistic description of the temperature and humidity dependence of phase state, diffusivity, and reactivity of BaP-containing particles. Low temperature and humidity can substantially increase the lifetime of BaP and enhance its atmospheric dispersion through both the planetary boundary layer and the free troposphere. The new scheme greatly improves the performance of multiscale models, leading to better agreement with observed BaP concentrations in both source regions and remote regions (Arctic), which cannot be achieved by less-elaborate degradation schemes (deviations by multiple orders of magnitude). Our results highlight the importance of considering temperature and humidity effects on both the phase state of aerosol particles and the chemical reactivity of particulate air pollutants.
Department of Chemistry University of California Irvine Irvine CA 92697 2025 USA
Institute for Environmental and Climate Research Jinan University 511443 Guangzhou China
Jiangsu Provincial Collaborative Innovation Center of Climate Change 210023 Nanjing China
Johannes Gutenberg University Mainz 55122 Mainz Germany
Multiphase Chemistry Department Max Planck Institute for Chemistry P O Box 3060 55128 Mainz Germany
Research Centre for Toxic Compounds in the Environment Masaryk University 62500 Brno Czech Republic
See more in PubMed
Perera F. P., Environment and cancer: Who are susceptible? Science 278, 1068–1073 (1997). PubMed
Boffetta P., Jourenkova N., Gustavsson P., Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8, 444–472 (1997). PubMed
Keyte I. J., Harrison R. M., Lammel G., Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 42, 9333–9391 (2013). PubMed
Pöschl U., Letzel T., Schauer C., Niessner R., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J. Phys. Chem. A 105, 4029–4041 (2001).
Kwamena N.-O. A., Thornton J. A., Abbatt J. P. D., Kinetics of surface-bound benzo[a]pyrene and ozone on solid organic and salt aerosols. J. Phys. Chem. A 108, 11626–11634 (2004).
Zhou S., Lee A. K. Y., McWhinney R. D., Abbatt J. P. D., Burial effects of organic coatings on the heterogeneous reactivity of particle-borne benzo[a]pyrene (BaP) toward ozone. J. Phys. Chem. A 116, 7050–7056 (2012). PubMed
Halsall C. J., Barrie L. A., Fellin P., Muir D. C. G., Billeck B. N., Lockhart L., Rovinsky F. Ya., Kononov E. Ya., Pastukhov B., Spatial and temporal variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere. Environ. Sci. Technol. 31, 3593–3599 (1997).
Schauer C., Niessner R., Pöschl U., Polycyclic aromatic hydrocarbons in urban air particulate matter: Decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ. Sci. Technol. 37, 2861–2868 (2003). PubMed
Shiraiwa M., Ammann M., Koop T., Pöschl U., Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. U.S.A. 108, 11003–11008 (2011). PubMed PMC
Berkemeier T., Steimer S. S., Krieger U. K., Peter T., Pöschl U., Ammann M., Shiraiwa M., Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry. Phys. Chem. Chem. Phys. 18, 12662–12674 (2016). PubMed
Zhou S., Shiraiwa M., McWhinney R. D., Pöschl U., Abbatt J. P. D., Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discuss. 165, 391–406 (2013). PubMed
Shiraiwa M., Li Y., Tsimpidi A. P., Karydis V. A., Berkemeier T., Pandis S. N., Lelieveld J., Koop T., Pöschl U., Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8, 15002 (2017). PubMed PMC
Koop T., Bookhold J., Shiraiwa M., Pöschl U., Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13, 19238–19255 (2011). PubMed
Shrivastava M., Lou S., Zelenyuk A., Easter R. C., Corley R. A., Thrall B. D., Rasch P. J., Fast J. D., Massey Simonich S. L., Shen H., Tao S., Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. U.S.A. 114, 1246–1251 (2017). PubMed PMC
Matthias V., Aulinger A., Quante M., CMAQ simulations of the benzo(a)pyrene distribution over Europe for 2000 and 2001. Atmos. Environ. 43, 4078–4086 (2009).
Aulinger A., Matthias V., Quante M., An approach to temporally disaggregate benzo(a)pyrene emissions and their application to a 3D Eulerian atmospheric chemistry transport model. Water Air Soil Pollut. 216, 643–655 (2011).
Friedman C. L., Selin N. E., Long-range atmospheric transport of polycyclic aromatic hydrocarbons: A global 3-D model analysis including evaluation of Arctic sources. Environ. Sci. Technol. 46, 9501–9510 (2012). PubMed
San José R., Pérez J. L., Callén M. S., Lopez J. M., Mastral A., BaP (PAH) air quality modelling exercise over Zaragoza (Spain) using an adapted version of WRF-CMAQ model. Environ. Pollut. 183, 151–158 (2013). PubMed
Friedman C. L., Pierce J. R., Selin N. E., Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport. Environ. Sci. Technol. 48, 3293–3302 (2014). PubMed
Friedman C. L., Zhang Y., Selin N. E., Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environ. Sci. Technol. 48, 429–437 (2014). PubMed
Efstathiou C. I., Matejovičová J., Bieser J., Lammel G., Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants. Atmos. Chem. Phys. 16, 15327–15345 (2016).
Kahan T. F., Kwamena N.-O. A., Donaldson D. J., Heterogeneous ozonation kinetics of polycyclic aromatic hydrocarbons on organic films. Atmos. Environ. 40, 3448–3459 (2006).
Shiraiwa M., Sosedova Y., Rouvière A., Yang H., Zhang Y., Abbatt J. P. D., Ammann M., Pöschl U., The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nat. Chem. 3, 291–295 (2011). PubMed
Shiraiwa M., Pfrang C., Pöschl U., Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): The influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. Atmos. Chem. Phys. 10, 3673–3691 (2010).
Pöschl U., Rudich Y., Ammann M., Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions? Part 1: General equations, parameters, and terminology. Atmos. Chem. Phys. 7, 5989–6023 (2007).
Arangio A. M., Slade J. H., Berkemeier T., Pöschl U., Knopf D. A., Shiraiwa M., Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: Humidity and temperature dependence, surface reaction, and bulk diffusion. J. Phys. Chem. A 119, 4533–4544 (2015). PubMed
Aulinger A., Matthias V., Quante M., Introducing a partitioning mechanism for PAHs into the Community Multiscale Air Quality modeling system and its application to simulating the transport of benzo(a)pyrene over Europe. J. Appl. Meteorol. Climatol. 46, 1718–1730 (2007).
Zhang Y., Tao S., Ma J., Simonich S., Transpacific transport of benzo[a]pyrene emitted from Asia. Atmos. Chem. Phys. 11, 11993–12006 (2011).
Zhang Y., Shen H., Tao S., Ma J., Modeling the atmospheric transport and outflow of polycyclic aromatic hydrocarbons emitted from China. Atmos. Environ. 45, 2820–2827 (2011).
Hoyau V., Jaffrezo J. L., Garrigues Ph., Clain M. P., Masclet P., Deposition of aerosols in polar regions-contamination of the ice sheet by polycyclic aromatic hydrocarbons. Polycycl. Aromat. Compd. 8, 35–44 (1996).
Macdonald R. W., Bewers J. M., Contaminants in the arctic marine environment: Priorities for protection. Ices J. Mar. Sci. 53, 537–563 (1996).
R. K. Achazi, C. A. M. Van Gestel, Uptake and Accumulation of PAHs by Terrestrial Invertebrates, in PAHs: An Ecotoxicological Perspective, P. E. T. Douben, Ed. (Wiley, 2003), pp. 173–190.
Meador J. P., Stein J. E., Reichert W. L., Varanasi U., Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev. Environ. Contam. Toxicol. 143, 79–165 (1995). PubMed
Octaviani M., Stemmler I., Lammel G., Graf H. F., Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environ. Sci. Technol. 49, 3593–3602 (2015). PubMed
Berkemeier T., Shiraiwa M., Pöschl U., Koop T., Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. 14, 12513–12531 (2014).
Song M., Liu P. F., Hanna S. J., Li Y. J., Martin S. T., Bertram A. K., Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests. Atmos. Chem. Phys. 15, 5145–5159 (2015).
Shiraiwa M., Zuend A., Bertram A. K., Seinfeld J. H., Gas–particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 15, 11441–11453 (2013). PubMed
Shahpoury P., Lammel G., Albinet A., Sofuoǧlu A., Dumanoğlu Y., Sofuoǧlu S. C., Wagner Z., Zdimal V., Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships. Environ. Sci. Technol. 50, 12312–12319 (2016). PubMed
Cheng Y., Su H., Koop T., Mikhailov E., Pöschl U., Size dependence of phase transitions in aerosol nanoparticles. Nat. Commun. 6, 5923 (2015). PubMed PMC
Cheng Y., Zheng G., Wei C., Mu Q., Zheng B., Wang Z., Gao M., Zhang Q., He K., Carmichael G., Pöschl U., Su H., Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2, e1601530 (2016). PubMed PMC
Grell G. A., Peckham S. E., Schmitz R., McKeen S. A., Frost G., Skamarock W. C., Eder B., Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).
WRF-Chem Version 3.6.1 User’s Guide (National Center for Atmospheric Research, 2014)
E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins, “The atmospheric general circulation model ECHAM 5. Part I: Model description” (MPI-Report No. 349, Max Planck Institute for Meteorology, 2003).
Jöckel P., Kerkweg A., Pozzer A., Sander R., Tost H., Riede H., Baumgaertner A., Gromov S., Kern B., Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 3, 717–752 (2010).
Shen H., Huang Y., Wang R., Zhu D., Li W., Shen G., Wang B., Zhang Y., Chen Y., Lu Y., Chen H., Li T., Sun K., Li B., Liu W., Liu J., Tao S., Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 47, 6415–6424 (2013). PubMed PMC
Janssens-Maenhout G., Crippa M., Guizzardi D., Dentener F., Muntean M., Pouliot G., Keating T., Zhang Q., Kurokawa J., Wankmüller R., Denier van der Gon H., Kuenen J. J. P., Klimont Z., Frost G., Darras S., Koffi B., Li M., HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).
Lohmann R., Lammel G., Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Environ. Sci. Technol. 38, 3793–3803 (2004). PubMed
Galarneau E., Makar P. A., Zheng Q., Narayan J., Zhang J., Moran M. D., Bari M. A., Pathela S., Chen A., Chlumsky R., PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA. Atmos. Chem. Phys. 14, 4065–4077 (2014).
W. Klöpffer, B. O. Wagner, K. G. Steinhäuser, Atmospheric Degradation of Organic Substances: Persistence, Transport Potential, Spatial Range (Wiley, 2008).
Jury W. A., Spencer W. F., Farmer W. J., Behavior assessment model for trace organics in soil: I. Model description. J. Environ. Qual. 12, 558–564 (1983).
Lammel G., Sehili A. M., Bond T. C., Feichter J., Grassl H., Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons—A modelling approach. Chemosphere 76, 98–106 (2009). PubMed
Shiraiwa M., Pfrang C., Koop T., Pöschl U., Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): Linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmos. Chem. Phys. 12, 2777–2794 (2012).
Kim J. Y., Lee J. Y., Choi S.-D., Kim Y. P., Ghim Y. S., Gaseous and particulate polycyclic aromatic hydrocarbons at the Gosan background site in East Asia. Atmos. Environ. 49, 311–319 (2012).
Tørseth K., Aas W., Breivik K., Fjæraa A. M., Fiebig M., Hjellbrekke A. G., Lund Myhre C., Solberg S., Yttri K. E., Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 12, 5447–5481 (2012).
Galarneau E., Bidleman T. F., Blanchard P., Seasonality and interspecies differences in particle/gas partitioning of PAHs observed by the Integrated Atmospheric Deposition Network (IADN). Atmos. Environ. 40, 182–197 (2006).
Hung H., Kallenborn R., Breivik K., Su Y., Brorström-Lundén E., Olafsdottir K., Thorlacius J. M., Leppänen S., Bossi R., Skov H., Manø S., Patton G. W., Stern G., Sverko E., Fellin P., Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci. Total Environ. 408, 2854–2873 (2010). PubMed
A. Ding, X. Huang, C. Fu, Air pollution and weather interaction in East Asia (Oxford Research Encyclopedia of Environmental Science, 2017).
Ding A., Wang T., Xue L., Gao J., Stohl A., Lei H., Jin D., Ren Y., Wang X., Wei X., Qi Y., Liu J., Zhang X., Transport of north China air pollution by midlatitude cyclones: Case study of aircraft measurements in summer 2007. J. Geophys. Res. 114, D08304 (2009).
Stohl A., Klimont Z., Eckhardt S., Kupiainen K., Shevchenko V. P., Kopeikin V. M., Novigatsky A. N., Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 13, 8833–8855 (2013).
Winiger P., Andersson A., Eckhardt S., Stohl A., Gustafsson Ö., The sources of atmospheric black carbon at a European gateway to the Arctic. Nat. Commun. 7, 12776 (2016). PubMed PMC