Monitoring of Cardiorespiratory Signals Using Thermal Imaging: A Pilot Study on Healthy Human Subjects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29757248
PubMed Central
PMC5982845
DOI
10.3390/s18051541
PII: s18051541
Knihovny.cz E-zdroje
- Klíčová slova
- contactless measurement, heart rate, infrared imaging, infrared thermography, respiratory rate, thermal imaging,
- MeSH
- algoritmy MeSH
- analýza hlavních komponent MeSH
- dechová frekvence fyziologie MeSH
- dospělí MeSH
- infračervené záření MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- monitorování fyziologických funkcí metody MeSH
- pilotní projekty MeSH
- počítačové zpracování signálu MeSH
- srdeční frekvence fyziologie MeSH
- termografie metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Heart rate (HR) and respiratory rate (RR) are important parameters for patient assessment. However, current measurement techniques require attachment of sensors to the patient’s body, often leading to discomfort, stress and even pain. A new algorithm is presented for monitoring both HR and RR using thermal imaging. The cyclical ejection of blood flow from the heart to the head (through carotid arteries and thoracic aorta) leads to periodic movements of the head; these vertical movements are used to assess HR. Respiratory rate is estimated by using temperature fluctuations under the nose during the respiratory cycle. To test the viability and feasibility of this approach, a pilot study was conducted with 20 healthy subjects (aged 18⁻36 and 1 aged 50 years). The study consisted of two phases: phase A (frontal view acquisitions) and phase B (side view acquisitions). To validate the results, photoplethysmography and thoracic effort (piezoplethysmography) were simultaneously recorded. High agreement between infrared thermography and ground truth/gold standard was achieved. For HR, the root-mean-square errors (RMSE) for phases A and B were 3.53 ± 1.53 and 3.43 ± 1.61 beats per minute, respectively. For RR, the RMSE between thermal imaging and piezoplethysmography stayed around 0.71 ± 0.30 breaths per minute (phase A). This study demonstrates that infrared thermography may be a promising, clinically relevant alternative for the assessment of HR and RR.
Zobrazit více v PubMed
Modak R.K. Anesthesiology Keywords Review. 2nd ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2013.
Bartula M., Tigges T., Muehlsteff J. Camera-based system for contactless monitoring of respiration; Proceedings of the IEEE Engineering in Medicine and Biology Society; Osaka, Japan. 3–7 July 2013; pp. 2672–2675. PubMed
Fei J., Pavlidis I. Thermistor at a distance: Unobtrusive measurement of breathing. IEEE Trans. Biomed. Eng. 2010;57:988–998. doi: 10.1109/TBME.2009.2032415. PubMed DOI
Pereira C.B., Yu X., Czaplik M., Rossaint R., Blazek V., Leonhardt S. Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express. 2015;6:4378–4394. doi: 10.1364/BOE.6.004378. PubMed DOI PMC
Baharestani M.M. An overview of neonatal and pediatric wound care knowledge and considerations. Ostomy Wound Manag. 2007;53:34–55. PubMed
Droitcour A.D., Seto T.B., Park B.-K., Yamada S., Vergara A., El Hourani C., Shing T., Yuen A., Lubecke V.M., Boric-Lubecke O. Non-contact respiratory rate measurement validation for hospitalized patients; Proceedings of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 2–6 September 2009; pp. 4812–4815. PubMed PMC
Oehler M., Schilling M., Emperor H. Capacitive ECG system with direct access to standard leads and body surface potential mapping. Biomed. Technol. 2009;54:329–335. doi: 10.1515/BMT.2009.042. PubMed DOI
Teichmann D., Teichmann M., Weitz P., Wolfart S., Leonhardt S., Walter M. SensInDenT: Noncontact Sensors Integrated Into Dental Treatment Units. IEEE Trans. Biomed. Circuits Syst. 2017;11:225–233. doi: 10.1109/TBCAS.2016.2574922. PubMed DOI
Tarassenko L., Villarroel M., Guazzi A., Jorge J., Clifton D.A., Pugh C. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Phys. Meas. 2014;35:807–831. doi: 10.1088/0967-3334/35/5/807. PubMed DOI
Li M.H., Yadollahi A., Taati B. Noncontact Vision-Based Cardiopulmonary Monitoring in Different Sleeping Positions. IEEE J. Biomed. Health Inform. 2017;21:1367–1375. doi: 10.1109/JBHI.2016.2567298. PubMed DOI
Blanik N., Heimann K., Pereira C., Paul M., Blazek V., Venema B., Orlikowsky T., Leonhardt S. Remote Vital Parameter Monitoring in Neonatology—Robust, Unobtrusive Heart Rate Detection in a Realistic Clinical Scenario. Biomed. Technol. 2016;61:631–643. doi: 10.1515/bmt-2016-0025. PubMed DOI
Garbey M., Sun N., Merla A., Pavlidis I. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 2007;54:1418–1426. doi: 10.1109/TBME.2007.891930. PubMed DOI
Chekmenev S.Y., Farag A.A., Essock E.A. Multiresolution Approach for Non-Contact Measurements of Arterial Pulse using Thermal Imaging; Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop; New York, NY, USA. 17–22 June 2006; pp. 1–4.
Pereira C.B., Czaplik M., Blanik N., Rossaint R., Blazek V., Leonhardt S. Contact-free monitoring of circulation and perfusion dynamics based on the analysis of thermal imagery. Biomed. Opt. Express. 2014;5:1075–1089. doi: 10.1364/BOE.5.001075. PubMed DOI PMC
Pereira C., Heimann K., Venema B., Blazek V., Czaplik M., Leonhardt S. Estimation of respiratory rate from thermal videos of preterm infants; Proceedings of the IEEE Engineering in Medicine and Biology Society; Seogwipo, Korea. 11–15 July 2017; pp. 3818–3821. PubMed
Lewis G.F., Gatto R.G., Porges S.W. A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology. 2011;48:877–887. doi: 10.1111/j.1469-8986.2010.01167.x. PubMed DOI PMC
Fraiwan L., AlKhodari M., Ninan J., Mustafa B., Saleh A., Ghazal M. Diabetic foot ulcer mobile detection system using smart phone thermal camera: A feasibility study. Biomed. Eng. Online. 2017;16:1–19. doi: 10.1186/s12938-017-0408-x. PubMed DOI PMC
Czaplik M., Hochhausen N., Dohmeier H., Barbosa Pereira C., Rossaint R. Development of a Thermal-Associated Pain Index score Using Infrared-Thermography for Objective Pain Assessment; Proceedings of the IEEE Engineering in Medicine and Biology Society; Seogwipo, Korea. 11–15 July 2017; pp. 3831–3834. PubMed
Heimann K., Jergus K., Abbas A.K., Heussen N., Leonhardt S., Orlikowsky T. Infrared thermography for detailed registration of thermoregulation in premature infants. J. Perinat Med. 2013;41:613–620. doi: 10.1515/jpm-2012-0239. PubMed DOI
Knobel R., Guenther B., Rice H. Thermoregulation and Thermography in Neonatal Physiology and Disease. Biol. Res. Nurs. 2011;13:274–282. doi: 10.1177/1099800411403467. PubMed DOI PMC
Sun G., Nakayama Y., Dagdanpurev S., Abe S., Nishimura H., Kirimoto T., Matsui T. Remote sensing of multiple vital signs using a CMOS camera-equipped infrared thermography system and its clinical application in rapidly screening patients with suspected infectious diseases. Int. J. Infect. Dis. 2017;55:113–117. doi: 10.1016/j.ijid.2017.01.007. PubMed DOI PMC
Lahiri B., Bagavathiappan S., Jayakumar T., Philip J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012;55:221–235. doi: 10.1016/j.infrared.2012.03.007. PubMed DOI PMC
Löser R.E. Ph.D. Thesis. Faculty of Electrical Engineering, Technical University Darmstadt; Darmstadt, Germany: 1989. Die Messung und Auswertung des Kopfballistogrammes als Möglichkeit zur Erkennung des Schnellen Hirndruckanstieges.
Brüser C., Winter S., Leonhardt S. Robust inter-beat interval estimation in cardiac vibration signals. Phys. Meas. 2013;34:123–138. doi: 10.1088/0967-3334/34/2/123. PubMed DOI
Brüser C. Ph.D. Thesis. Faculty of Electrical Engineering, RWTH Aachen University; Aachen, Germany: 2014. Sensing and Signal Processing for Unobtrusive Cardiac Monitoring Utilizing Ballistocardiography.
Balakrishnan G., Durand F., Guttag J. Detecting pulse from head motions in video; Proceedings of the IEEE Computer Vision and Pattern Recognition; Portland, OR, USA. 23–28 June 2013; pp. 3430–3437.
Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI
Liao P.S., Chen T.S., Chung P.C. A fast algorithm for multi-level thresholding. J. Inf. Sci. Eng. 2001;17:713–727.
Shi J., Tomasi C. Good features to track; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Seattle, WA, USA. 21–23 June 1994; pp. 593–600.
Jolliffe I.T. Principal Component Analysis. In: Bickel P., Diggle P., Fienberg S.E., Gather U., Zeger S., editors. Springer Series in Statistics. Springer; Berlin, Germany: 2002.
Pereira C.B., Yu X., Czaplik M., Blazek V., Venema B., Leonhardt S. Estimation of breathing rate in thermal imaging videos: A pilot study on healthy human subjects. J. Clin. Monit. Comput. 2017;31:1241–1254. doi: 10.1007/s10877-016-9949-y. PubMed DOI
Shafiq G., Veluvolu K.C. Surface chest motion decomposition for cardiovascular monitoring. Sci. Rep. 2014;4:1–9. doi: 10.1038/srep05093. PubMed DOI PMC