Selected Biomarkers Correlate with the Origin and Severity of Sepsis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29769838
PubMed Central
PMC5892215
DOI
10.1155/2018/7028267
Knihovny.cz E-zdroje
- MeSH
- biologické markery metabolismus MeSH
- chemokin CCL2 metabolismus MeSH
- chemokin CCL4 metabolismus MeSH
- hydrokortison metabolismus MeSH
- interleukin-10 metabolismus MeSH
- interleukin-6 metabolismus MeSH
- interleukin-8 metabolismus MeSH
- kationické antimikrobiální peptidy metabolismus MeSH
- krevní proteiny metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipopolysacharidové receptory metabolismus MeSH
- péče o pacienty v kritickém stavu MeSH
- senioři MeSH
- sepse metabolismus MeSH
- transportní proteiny metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AZU1 protein, human MeSH Prohlížeč
- biologické markery MeSH
- chemokin CCL2 MeSH
- chemokin CCL4 MeSH
- hydrokortison MeSH
- interleukin-10 MeSH
- interleukin-6 MeSH
- interleukin-8 MeSH
- kationické antimikrobiální peptidy MeSH
- krevní proteiny MeSH
- lipopolysacharidové receptory MeSH
- transportní proteiny MeSH
The microbial etiology and source of sepsis influence the inflammatory response. Therefore, the plasma levels of cytokines (IL-6, IL-8, and IL-10), chemokines (CCL2/MCP-1, MIP-1β), heparin-binding protein (HBP), soluble CD14 (sCD14), and cortisol were analyzed in blood from septic patients obtained during the first 96 hours of intensive care unit hospitalization. The etiology was established in 56 out of a total of 62 patients enrolled in the study. Plasma concentrations of MCP-1, sCD14, IL-6, and IL-10 were significantly higher in patients with community-acquired pneumonia (CAP; n = 10) and infective endocarditis (IE; n = 11) compared to those with bacterial meningitis (BM; n = 18). Next, cortisol levels were higher in IE patients than in those with BM and CAP, and at one time point, cortisol was also higher in patients with gram-negative sepsis when compared to those with gram-positive infections. Furthermore, cortisol and MCP-1 levels correlated positively with the daily measured SOFA score. In addition, HBP levels were significantly higher in patients with IE than in those with BM. Our findings suggest that MCP-1, sCD14, IL-6, IL-10, cortisol, and HBP are modulated by the source of sepsis and that elevated MCP-1 and cortisol plasma levels are associated with sepsis-induced organ dysfunction.
Zobrazit více v PubMed
Rhodes A., Evans L. E., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI
Cunha B. A. Empiric antimicrobial therapy for bacteremia: get it right from the start or get a call from infectious disease. Clinical Infectious Diseases. 2004;39(8):1170–1173. doi: 10.1086/424525. PubMed DOI
Phua J., Ngerng W., See K., et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Critical Care. 2013;17(5, article R202) doi: 10.1186/cc12896. PubMed DOI PMC
Meyer E., Schwab F., Schroeren-Boersch B., Gastmeier P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Critical Care. 2010;14(3, article R113) doi: 10.1186/cc9062. PubMed DOI PMC
Chalmers J. D., Akram A. R., Singanayagam A., Wilcox M. H., Hill A. T. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. Journal of Infection. 2016;73(1):45–53. doi: 10.1016/j.jinf.2016.04.008. PubMed DOI
Li S., Rong H., Guo Q., Chen Y., Zhang G., Yang J. Serum procalcitonin levels distinguish gram-negative bacterial sepsis from gram-positive bacterial and fungal sepsis. Journal of Research in Medical Sciences. 2016;21(1):p. 39. doi: 10.4103/1735-1995.183996. PubMed DOI PMC
Hedlund J., Hansson L. O. Procalcitonin and C-reactive protein levels in community-acquired pneumonia: correlation with etiology and prognosis. Infection. 2000;28(2):68–73. doi: 10.1007/s150100050049. PubMed DOI
Celik I. H., Demirel G., Uras N., Oguz E. S., Erdeve O., Dilmen U. The role of serum interleukin-6 and C-reactive protein levels for differentiating aetiology of neonatal sepsis. Archivos Latino-Americanos de Pediatría. 2015;113(6):534–537. doi: 10.5546/aap.2015.534. PubMed DOI
Zobel K., Martus P., Pletz M. W., et al. Interleukin 6, lipopolysaccharide-binding protein and interleukin 10 in the prediction of risk and etiologic patterns in patients with community-acquired pneumonia: results from the German competence network CAPNETZ. BMC Pulmonary Medicine. 2012;12(1) doi: 10.1186/1471-2466-12-6. PubMed DOI PMC
Bozza F. A., Salluh J. I., Japiassu A. M., et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Critical Care. 2007;11(2, article R49) doi: 10.1186/cc5783. PubMed DOI PMC
Reinhart K., Bauer M., Riedemann N. C., Hartog C. S. New approaches to sepsis: molecular diagnostics and biomarkers. Clinical Microbiology Reviews. 2012;25(4):609–634. doi: 10.1128/CMR.00016-12. PubMed DOI PMC
Rello J., Valenzuela-Sánchez F., Ruiz-Rodriguez M., Moyano S. Sepsis: a review of advances in management. Advances in Therapy. 2017;34(11):2393–2411. doi: 10.1007/s12325-017-0622-8. PubMed DOI PMC
Levy M. M., Fink M. P., Marshall J. C., et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Medicine. 2003;29(4):530–538. doi: 10.1007/s00134-003-1662-x. PubMed DOI
Tapper H., Karlsson A., Mörgelin M., Flodgaard H., Herwald H. Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles. Blood. 2002;99(5):1785–1793. doi: 10.1182/blood.v99.5.1785. PubMed DOI
Cavalcanti N. V., Torres L. C., da Matta M. C., et al. Chemokine patterns in children with acute bacterial infections. Scandinavian Journal of Immunology. 2016;84(6):338–343. doi: 10.1111/sji.12492. PubMed DOI
Biancotto A., Wank A., Perl S., et al. Baseline levels and temporal stability of 27 multiplexed serum cytokine concentrations in healthy subjects. PLoS One. 2013;8(12, article e76091) doi: 10.1371/journal.pone.0076091. PubMed DOI PMC
Yong K. K., Chang J. H., Chien M. H., et al. Plasma monocyte chemoattractant protein-1 level as a predictor of the severity of community-acquired pneumonia. International Journal of Molecular Sciences. 2016;17(2) doi: 10.3390/ijms17020179. PubMed DOI PMC
Holub M., Lawrence D. A., Andersen N., et al. Cytokines and chemokines as biomarkers of community-acquired bacterial infection. Mediators of Inflammation. 2013;2013:7. doi: 10.1155/2013/190145.190145 PubMed DOI PMC
Vermont C. L., Hazelzet J. A., de Kleijn E. D., van den Dobbelsteen G. P., de Groot R. CC and CXC chemokine levels in children with meningococcal sepsis accurately predict mortality and disease severity. Critical Care. 2006;10(1, article R33) doi: 10.1186/cc4836. PubMed DOI PMC
Hong T. H., Chang C. H., Ko W. J., et al. Biomarkers of early sepsis may be correlated with outcome. Journal of Translational Medicine. 2014;12(1):p. 146. doi: 10.1186/1479-5876-12-146. PubMed DOI PMC
Jansen P. M., van Damme J., Put W., de Jong I. W., Taylor F. B., Hack C. E. Monocyte chemotactic protein 1 is released during lethal and sublethal bacteremia in baboons. The Journal of Infectious Diseases. 1995;171(6):1640–1642. doi: 10.1093/infdis/171.6.1640. PubMed DOI
Bossink A. W., Paemen L., Jansen P. M., Hack C. E., Thijs L. G., Van Damme J. Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis. Blood. 1995;86(10):3841–3847. PubMed
Møller A. S. W., Bjerre A., Brusletto B., Joø G. B., Brandtzaeg P., Kierulf P. Chemokine patterns in meningococcal disease. Journal of Infectious Diseases. 2005;191(5):768–775. doi: 10.1086/427514. PubMed DOI
Olszyna D. P., Prins J. M., Dekkers P. E. P., et al. Sequential measurements of chemokines in urosepsis and experimental endotoxemia. Journal of Clinical Immunology. 1999;19(6):399–405. doi: 10.1023/A:1020554817047. PubMed DOI
Schein R. M. H., Sprung C. L., Marcial E., Napolitano L., Chernow B. Plasma cortisol levels in patients with septic shock. Critical Care Medicine. 1990;18(3):259–263. doi: 10.1097/00003246-199003000-00002. PubMed DOI
Joosten K. F. M., de Kleijn E. D., Westerterp M., et al. Endocrine and metabolic responses in children with meningoccocal sepsis: striking differences between survivors and nonsurvivors. The Journal of Clinical Endocrinology & Metabolism. 2000;85(10):3746–3753. doi: 10.1210/jcem.85.10.6901. PubMed DOI
Zilio M., Mazzai L., Sartori M. T., et al. A venous thromboembolism risk assessment model for patients with Cushing's syndrome. Endocrine. 2016;52(2):322–332. doi: 10.1007/s12020-015-0665-z. PubMed DOI
Moran J. L., Chapman M. J., O'Fathartaigh M. S., Peisach A. R., Pannall P. R., Leppard P. Hypocortisolaemia and adrenocortical responsiveness at onset of septic shock. Intensive Care Medicine. 1994;20(7):489–495. doi: 10.1007/BF01711901. PubMed DOI
Kwon Y. S., Suh G. Y., Kang E. H., et al. Basal serum cortisol levels are not predictive of response to corticotropin but have prognostic significance in patients with septic shock. Journal of Korean Medical Science. 2007;22(3):470–475. doi: 10.3346/jkms.2007.22.3.470. PubMed DOI PMC
Gheorghiţă V., Barbu A. E., Gheorghiu M. L., Căruntu F. A. Endocrine dysfunction in sepsis: a beneficial or deleterious host response? Germs. 2015;5(1):17–25. doi: 10.11599/germs.2015.1067. PubMed DOI PMC
McGill F., Heyderman R. S., Panagiotou S., Tunkel A. R., Solomon T. Acute bacterial meningitis in adults. The Lancet. 2016;388(10063):3036–3047. doi: 10.1016/S0140-6736(16)30654-7. PubMed DOI
Bentzer P., Fisher J., Kong H. J., et al. Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Medicine Experimental. 2016;4(1):p. 33. doi: 10.1186/s40635-016-0104-3. PubMed DOI PMC
Landmann R., Zimmerli W., Sansano S., et al. Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. The Journal of Infectious Diseases. 1995;171(3):639–644. doi: 10.1093/infdis/171.3.639. PubMed DOI
Blanco A., Solis G., Arranz E., Coto G. D., Ramos A., Telleria J. Serum levels of CD14 in neonatal sepsis by gram-positive and gram-negative bacteria. Acta Paediatrica. 1996;85(6):728–732. doi: 10.1111/j.1651-2227.1996.tb14135.x. PubMed DOI
Aalto H., Takala A., Kautiainen H., Siitonen S., Repo H. Monocyte CD14 and soluble CD14 in predicting mortality of patients with severe community acquired infection. Scandinavian Journal of Infectious Diseases. 2009;39(6-7):596–603. doi: 10.1080/00365540701199808. PubMed DOI
Chalupa P., Beran O., Herwald H., Kaspříková N., Holub M. Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection. 2011;39(5):411–417. doi: 10.1007/s15010-011-0126-4. PubMed DOI
Arranz E., Blanco-Quiroös A., Solís P., Garrote J. A. Lack of correlation between soluble CD14 and IL-6 in meningococcal septic shock. Pediatric Allergy and Immunology. 1997;8(4):194–199. doi: 10.1111/j.1399-3038.1997.tb00160.x. PubMed DOI
Tejera A., Santolaria F., Diez M. L., et al. Prognosis of community acquired pneumonia (CAP): value of triggering receptor expressed on myeloid cells-1 (TREM-1) and other mediators of the inflammatory response. Cytokine. 2007;38(3):117–123. doi: 10.1016/j.cyto.2007.05.002. PubMed DOI
Larsen F. F., Petersen J. A. Novel biomarkers for sepsis: a narrative review. European Journal of Internal Medicine. 2017;45:46–50. doi: 10.1016/j.ejim.2017.09.030. PubMed DOI
Hack C. E., De Groot E. R., Felt-Bersma R. J., et al. Increased plasma levels of interleukin-6 in sepsis. Blood. 1989;74(5):1704–1710. PubMed
Calandra T., Gerain J., Heumann D., Baumgartner J. D., Glauser M. P., The Swiss-Dutch J5 immunoglobulin study group High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The American Journal of Medicine. 1991;91(1):23–29. doi: 10.1016/0002-9343(91)90069-A. PubMed DOI
Hack C. E., Hart M., van Schijndel R. J., et al. Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infection and Immunity. 1992;60(7):2835–2842. PubMed PMC
Marchant A., Devière J., Byl B., De Groote D., Vincent J. L., Goldman M. Interleukin-10 production during septicaemia. The Lancet. 1994;343(8899):707–708. doi: 10.1016/S0140-6736(94)91584-9. PubMed DOI