Selected Biomarkers Correlate with the Origin and Severity of Sepsis

. 2018 ; 2018 () : 7028267. [epub] 20180327

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29769838

The microbial etiology and source of sepsis influence the inflammatory response. Therefore, the plasma levels of cytokines (IL-6, IL-8, and IL-10), chemokines (CCL2/MCP-1, MIP-1β), heparin-binding protein (HBP), soluble CD14 (sCD14), and cortisol were analyzed in blood from septic patients obtained during the first 96 hours of intensive care unit hospitalization. The etiology was established in 56 out of a total of 62 patients enrolled in the study. Plasma concentrations of MCP-1, sCD14, IL-6, and IL-10 were significantly higher in patients with community-acquired pneumonia (CAP; n = 10) and infective endocarditis (IE; n = 11) compared to those with bacterial meningitis (BM; n = 18). Next, cortisol levels were higher in IE patients than in those with BM and CAP, and at one time point, cortisol was also higher in patients with gram-negative sepsis when compared to those with gram-positive infections. Furthermore, cortisol and MCP-1 levels correlated positively with the daily measured SOFA score. In addition, HBP levels were significantly higher in patients with IE than in those with BM. Our findings suggest that MCP-1, sCD14, IL-6, IL-10, cortisol, and HBP are modulated by the source of sepsis and that elevated MCP-1 and cortisol plasma levels are associated with sepsis-induced organ dysfunction.

Zobrazit více v PubMed

Rhodes A., Evans L. E., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI

Cunha B. A. Empiric antimicrobial therapy for bacteremia: get it right from the start or get a call from infectious disease. Clinical Infectious Diseases. 2004;39(8):1170–1173. doi: 10.1086/424525. PubMed DOI

Phua J., Ngerng W., See K., et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Critical Care. 2013;17(5, article R202) doi: 10.1186/cc12896. PubMed DOI PMC

Meyer E., Schwab F., Schroeren-Boersch B., Gastmeier P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Critical Care. 2010;14(3, article R113) doi: 10.1186/cc9062. PubMed DOI PMC

Chalmers J. D., Akram A. R., Singanayagam A., Wilcox M. H., Hill A. T. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. Journal of Infection. 2016;73(1):45–53. doi: 10.1016/j.jinf.2016.04.008. PubMed DOI

Li S., Rong H., Guo Q., Chen Y., Zhang G., Yang J. Serum procalcitonin levels distinguish gram-negative bacterial sepsis from gram-positive bacterial and fungal sepsis. Journal of Research in Medical Sciences. 2016;21(1):p. 39. doi: 10.4103/1735-1995.183996. PubMed DOI PMC

Hedlund J., Hansson L. O. Procalcitonin and C-reactive protein levels in community-acquired pneumonia: correlation with etiology and prognosis. Infection. 2000;28(2):68–73. doi: 10.1007/s150100050049. PubMed DOI

Celik I. H., Demirel G., Uras N., Oguz E. S., Erdeve O., Dilmen U. The role of serum interleukin-6 and C-reactive protein levels for differentiating aetiology of neonatal sepsis. Archivos Latino-Americanos de Pediatría. 2015;113(6):534–537. doi: 10.5546/aap.2015.534. PubMed DOI

Zobel K., Martus P., Pletz M. W., et al. Interleukin 6, lipopolysaccharide-binding protein and interleukin 10 in the prediction of risk and etiologic patterns in patients with community-acquired pneumonia: results from the German competence network CAPNETZ. BMC Pulmonary Medicine. 2012;12(1) doi: 10.1186/1471-2466-12-6. PubMed DOI PMC

Bozza F. A., Salluh J. I., Japiassu A. M., et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Critical Care. 2007;11(2, article R49) doi: 10.1186/cc5783. PubMed DOI PMC

Reinhart K., Bauer M., Riedemann N. C., Hartog C. S. New approaches to sepsis: molecular diagnostics and biomarkers. Clinical Microbiology Reviews. 2012;25(4):609–634. doi: 10.1128/CMR.00016-12. PubMed DOI PMC

Rello J., Valenzuela-Sánchez F., Ruiz-Rodriguez M., Moyano S. Sepsis: a review of advances in management. Advances in Therapy. 2017;34(11):2393–2411. doi: 10.1007/s12325-017-0622-8. PubMed DOI PMC

Levy M. M., Fink M. P., Marshall J. C., et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Medicine. 2003;29(4):530–538. doi: 10.1007/s00134-003-1662-x. PubMed DOI

Tapper H., Karlsson A., Mörgelin M., Flodgaard H., Herwald H. Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles. Blood. 2002;99(5):1785–1793. doi: 10.1182/blood.v99.5.1785. PubMed DOI

Cavalcanti N. V., Torres L. C., da Matta M. C., et al. Chemokine patterns in children with acute bacterial infections. Scandinavian Journal of Immunology. 2016;84(6):338–343. doi: 10.1111/sji.12492. PubMed DOI

Biancotto A., Wank A., Perl S., et al. Baseline levels and temporal stability of 27 multiplexed serum cytokine concentrations in healthy subjects. PLoS One. 2013;8(12, article e76091) doi: 10.1371/journal.pone.0076091. PubMed DOI PMC

Yong K. K., Chang J. H., Chien M. H., et al. Plasma monocyte chemoattractant protein-1 level as a predictor of the severity of community-acquired pneumonia. International Journal of Molecular Sciences. 2016;17(2) doi: 10.3390/ijms17020179. PubMed DOI PMC

Holub M., Lawrence D. A., Andersen N., et al. Cytokines and chemokines as biomarkers of community-acquired bacterial infection. Mediators of Inflammation. 2013;2013:7. doi: 10.1155/2013/190145.190145 PubMed DOI PMC

Vermont C. L., Hazelzet J. A., de Kleijn E. D., van den Dobbelsteen G. P., de Groot R. CC and CXC chemokine levels in children with meningococcal sepsis accurately predict mortality and disease severity. Critical Care. 2006;10(1, article R33) doi: 10.1186/cc4836. PubMed DOI PMC

Hong T. H., Chang C. H., Ko W. J., et al. Biomarkers of early sepsis may be correlated with outcome. Journal of Translational Medicine. 2014;12(1):p. 146. doi: 10.1186/1479-5876-12-146. PubMed DOI PMC

Jansen P. M., van Damme J., Put W., de Jong I. W., Taylor F. B., Hack C. E. Monocyte chemotactic protein 1 is released during lethal and sublethal bacteremia in baboons. The Journal of Infectious Diseases. 1995;171(6):1640–1642. doi: 10.1093/infdis/171.6.1640. PubMed DOI

Bossink A. W., Paemen L., Jansen P. M., Hack C. E., Thijs L. G., Van Damme J. Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis. Blood. 1995;86(10):3841–3847. PubMed

Møller A. S. W., Bjerre A., Brusletto B., Joø G. B., Brandtzaeg P., Kierulf P. Chemokine patterns in meningococcal disease. Journal of Infectious Diseases. 2005;191(5):768–775. doi: 10.1086/427514. PubMed DOI

Olszyna D. P., Prins J. M., Dekkers P. E. P., et al. Sequential measurements of chemokines in urosepsis and experimental endotoxemia. Journal of Clinical Immunology. 1999;19(6):399–405. doi: 10.1023/A:1020554817047. PubMed DOI

Schein R. M. H., Sprung C. L., Marcial E., Napolitano L., Chernow B. Plasma cortisol levels in patients with septic shock. Critical Care Medicine. 1990;18(3):259–263. doi: 10.1097/00003246-199003000-00002. PubMed DOI

Joosten K. F. M., de Kleijn E. D., Westerterp M., et al. Endocrine and metabolic responses in children with meningoccocal sepsis: striking differences between survivors and nonsurvivors. The Journal of Clinical Endocrinology & Metabolism. 2000;85(10):3746–3753. doi: 10.1210/jcem.85.10.6901. PubMed DOI

Zilio M., Mazzai L., Sartori M. T., et al. A venous thromboembolism risk assessment model for patients with Cushing's syndrome. Endocrine. 2016;52(2):322–332. doi: 10.1007/s12020-015-0665-z. PubMed DOI

Moran J. L., Chapman M. J., O'Fathartaigh M. S., Peisach A. R., Pannall P. R., Leppard P. Hypocortisolaemia and adrenocortical responsiveness at onset of septic shock. Intensive Care Medicine. 1994;20(7):489–495. doi: 10.1007/BF01711901. PubMed DOI

Kwon Y. S., Suh G. Y., Kang E. H., et al. Basal serum cortisol levels are not predictive of response to corticotropin but have prognostic significance in patients with septic shock. Journal of Korean Medical Science. 2007;22(3):470–475. doi: 10.3346/jkms.2007.22.3.470. PubMed DOI PMC

Gheorghiţă V., Barbu A. E., Gheorghiu M. L., Căruntu F. A. Endocrine dysfunction in sepsis: a beneficial or deleterious host response? Germs. 2015;5(1):17–25. doi: 10.11599/germs.2015.1067. PubMed DOI PMC

McGill F., Heyderman R. S., Panagiotou S., Tunkel A. R., Solomon T. Acute bacterial meningitis in adults. The Lancet. 2016;388(10063):3036–3047. doi: 10.1016/S0140-6736(16)30654-7. PubMed DOI

Bentzer P., Fisher J., Kong H. J., et al. Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Medicine Experimental. 2016;4(1):p. 33. doi: 10.1186/s40635-016-0104-3. PubMed DOI PMC

Landmann R., Zimmerli W., Sansano S., et al. Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. The Journal of Infectious Diseases. 1995;171(3):639–644. doi: 10.1093/infdis/171.3.639. PubMed DOI

Blanco A., Solis G., Arranz E., Coto G. D., Ramos A., Telleria J. Serum levels of CD14 in neonatal sepsis by gram-positive and gram-negative bacteria. Acta Paediatrica. 1996;85(6):728–732. doi: 10.1111/j.1651-2227.1996.tb14135.x. PubMed DOI

Aalto H., Takala A., Kautiainen H., Siitonen S., Repo H. Monocyte CD14 and soluble CD14 in predicting mortality of patients with severe community acquired infection. Scandinavian Journal of Infectious Diseases. 2009;39(6-7):596–603. doi: 10.1080/00365540701199808. PubMed DOI

Chalupa P., Beran O., Herwald H., Kaspříková N., Holub M. Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection. 2011;39(5):411–417. doi: 10.1007/s15010-011-0126-4. PubMed DOI

Arranz E., Blanco-Quiroös A., Solís P., Garrote J. A. Lack of correlation between soluble CD14 and IL-6 in meningococcal septic shock. Pediatric Allergy and Immunology. 1997;8(4):194–199. doi: 10.1111/j.1399-3038.1997.tb00160.x. PubMed DOI

Tejera A., Santolaria F., Diez M. L., et al. Prognosis of community acquired pneumonia (CAP): value of triggering receptor expressed on myeloid cells-1 (TREM-1) and other mediators of the inflammatory response. Cytokine. 2007;38(3):117–123. doi: 10.1016/j.cyto.2007.05.002. PubMed DOI

Larsen F. F., Petersen J. A. Novel biomarkers for sepsis: a narrative review. European Journal of Internal Medicine. 2017;45:46–50. doi: 10.1016/j.ejim.2017.09.030. PubMed DOI

Hack C. E., De Groot E. R., Felt-Bersma R. J., et al. Increased plasma levels of interleukin-6 in sepsis. Blood. 1989;74(5):1704–1710. PubMed

Calandra T., Gerain J., Heumann D., Baumgartner J. D., Glauser M. P., The Swiss-Dutch J5 immunoglobulin study group High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The American Journal of Medicine. 1991;91(1):23–29. doi: 10.1016/0002-9343(91)90069-A. PubMed DOI

Hack C. E., Hart M., van Schijndel R. J., et al. Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infection and Immunity. 1992;60(7):2835–2842. PubMed PMC

Marchant A., Devière J., Byl B., De Groote D., Vincent J. L., Goldman M. Interleukin-10 production during septicaemia. The Lancet. 1994;343(8899):707–708. doi: 10.1016/S0140-6736(94)91584-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...