Thermooptical evidence of carrier-stabilized ferroelectricity in ultrathin electrodeless films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
29855531
PubMed Central
PMC5981214
DOI
10.1038/s41598-018-26933-0
PII: 10.1038/s41598-018-26933-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Ferroelectric films may lose polarization as their thicknesses decrease to a few nanometers because of the depolarizing field that opposes the polarization therein. The depolarizing field is minimized when electrons or ions in the electrodes or the surface/interface layers screen the polarization charge or when peculiar domain configuration is formed. Here, we demonstrate ferroelectric phase transitions using thermooptical studies in ∼5-nm-thick epitaxial Pb0.5Sr0.5TiO3 films grown on different insulating substrates. By comparing theoretical modeling and experimental observations, we show that ferroelectricity is stabilized through redistribution of charge carriers (electrons or holes) inside ultrathin films. The related high-density of screening carriers is confined within a few-nanometers-thick layer in the vicinity of the insulator, thus resembling a two-dimensional carrier gas.
Institute of Physics NAS of Ukraine 03028 Kyiv Ukraine
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 18221 Prague Czech Republic
Institute of Problems for Material Sciences NAS of Ukraine 03028 Kyiv Ukraine
Zobrazit více v PubMed
Hong, S. (ed.) Nanoscale phenomena in ferroelectric thin films. Kluwer Academic Publishers, Boston Dordrecht New York London, 2004.
Ishiwara, H., Okuyama, M., Orimoto, Y. (eds) Ferroelectric Random Access Memories: Fundamentals and Applications. Springer-Verlag, Berlin Heidelberg, 2004.
Dawber M, Rabe KM, Scott JF. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005;77:1083. doi: 10.1103/RevModPhys.77.1083. DOI
Setter N, et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006;100:051606. doi: 10.1063/1.2336999. DOI
Rabe, K. M., Ahn, C. H., Triscone, J. M. (eds) Physics of Ferroelectrics: A Modern Perspective. Springer-Verlag, Berlin Heidelberg, 2007.
Fridkin, V., Ducharme, S. Ferroelectricity at theNanoscale: Basics and Applications. Springer-Verlag, Berlin Heidelberg, 2014.
Tilley, D. R. Finite-size effects on phase transitions in ferroelectrics. In Ferroelectic Thin Films Paz de Araujo, C., Scott, J. F., Taylor, G. W. (eds) Gordon and Breach, Amsterdam, 1996, p. 11–14.
Glinchuk MD, Eliseev EA, Stephanovich VA, Fahri R. Ferroelectric thin films properties - Depolarization field and renormalization of a “bulk” free energy coefficients. J. Appl. Phys. 2003;93:1150. doi: 10.1063/1.1529091. DOI
Eliseev EA, Kalinin SV, Morozovska AN. Finite size effects in ferroelectric-semiconductor thin films under open-circuited electric boundary conditions. J. Appl. Phys. 2015;117:034102. doi: 10.1063/1.4906139. DOI
Lichtensteiger, C. et al. Ferroelectricity in ultrathin film capacitors. in Oxide Ultrathin Films: Science and Technology Pacchioni, G., Valeri, S. (eds) Wiley-VCH, 2012, p. 265–307.
Highland MJ, et al. Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. Phys. Rev. Lett. 2011;107:187602. doi: 10.1103/PhysRevLett.107.187602. PubMed DOI
Stephenson GB, Highland MJ. Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation. Phys. Rev. B. 2011;84:064107. doi: 10.1103/PhysRevB.84.064107. PubMed DOI
Tenne DA, et al. Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy. Science. 2006;313:1614. doi: 10.1126/science.1130306. PubMed DOI
Chisholm MF, Luo W, Oxley MP, Pantelides ST, Lee HN. Atomic-Scale Compensation Phenomena at Polar Interfaces. Phys. Rev. Lett. 2010;105:197602. doi: 10.1103/PhysRevLett.105.197602. PubMed DOI
Hong S, Nakhmanson SM, Fong DD. Screening mechanisms at polar oxide heterointerfaces. Rep. Prog. Phys. 2016;79:076501. doi: 10.1088/0034-4885/79/7/076501. PubMed DOI
Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in ferroic crystals and thin films. Springer, New York, 2010.
Streiffer SK, et al. Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO3 Thin Films. Phys. Rev. Lett. 2002;89:067601. doi: 10.1103/PhysRevLett.89.067601. PubMed DOI
Fong DD, et al. Ferroelectricity in Ultrathin Perovskite Films. Science. 2004;304:1650. doi: 10.1126/science.1098252. PubMed DOI
Ivry Y, Chu DP, Scott JF, Durkan C. Flux Closure Vortexlike Domain Structures in Ferroelectric Thin Films. Phys. Rev. Lett. 2010;104:207602. doi: 10.1103/PhysRevLett.104.207602. PubMed DOI
McQuaid RGP, Gruverman A, Scott JF, Gregg JM. Exploring Vertex Interactions in Ferroelectric Flux-Closure Domains. Nano Lett. 2014;14:4230. doi: 10.1021/nl5006788. PubMed DOI
Tang YL, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science. 2015;348:547. doi: 10.1126/science.1259869. PubMed DOI
Yadav AK, et al. Observation of polar vortices in oxide superlattices. Nature. 2016;530:198. doi: 10.1038/nature16463. PubMed DOI
Chen Z, et al. 180° Ferroelectric Stripe Nanodomains in BiFeO3 Thin Films. Nano Lett. 2015;15:6506. doi: 10.1021/acs.nanolett.5b02031. PubMed DOI
Sharma Y, et al. Long-range Stripe Nanodomains in Epitaxial (110) BiFeO3 Thin Films on (100) NdGaO3 Substrate. Sci. Rep. 2017;7:4857. doi: 10.1038/s41598-017-05055-z. PubMed DOI PMC
Merz WJ. The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals. Phys. Rev. 1949;76:1221. doi: 10.1103/PhysRev.76.1221. DOI
Wiesendanger E. Optical properties of KNbO3. Ferroelectrics. 1970;1:141–148. doi: 10.1080/00150197008241478. DOI
Burns G, Scott BA. Index of refraction in ‘dirty’ displacive ferroelectrics. Solid State Commun. 1973;13:423. doi: 10.1016/0038-1098(73)90622-4. DOI
Fousek J, Petzelt J. Changes of refractive indices of crystals induced by structural phase transitions. Phys. Status Solidi. 1979;55:11. doi: 10.1002/pssa.2210550102. DOI
Burns G, Dacol FH. Polarization in the cubic phase of BaTiO3. Solid State Commun. 1982;42:9. doi: 10.1016/0038-1098(82)91018-3. DOI
Kleemann W, Schafer FJ, Fontana MD. Crystal optical studies of spontaneous and precursor polarization in KNbO3. Phys. Rev. B. 1984;30:1148. doi: 10.1103/PhysRevB.30.1148. PubMed DOI
Kleemann W, Schafer FJ, Rytz D. Crystal optical studies of precursor and spontaneous polarization in PbTiO3. Phys. Rev. B. 1986;34:7873. doi: 10.1103/PhysRevB.34.7873. PubMed DOI
Bhalla AS, et al. Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6Nb2O6: Polarization effects. Phys. Rev. B. 1987;36:2030. doi: 10.1103/PhysRevB.36.2030. PubMed DOI
Korshunov OY, Markovin PA, Pisarev RV. Thermoopitical study of precursor polarization in ferroelectrics with diffuse phase transitions. Ferroelectrics Lett. 1992;13:137. doi: 10.1080/07315179208203334. DOI
Markovin PA, et al. A crystal optical study of phase transitions in Sr1−xBaxTiO3 single crystals. J. Phys.: Condens. Matter. 1996;8:2377.
Trepakov V, Dejneka A, Markovin P, Lynnyk A, Jastrabik L. A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate. New J. Phys. 2009;11:083024. doi: 10.1088/1367-2630/11/8/083024. DOI
Tyunina M, et al. Ferroelectricity in antiferroelectric NaNbO3 crystal. J. Phys.: Condens. Matter. 2014;26:125901. PubMed
Tyunina M, Plekh M, Antonova M, Kalvane A. Ferroelectric transitions in epitaxial Pb0.5Sr0.5TiO3 films studied by dielectric analysis. Phys. Rev. B. 2011;84:224105. doi: 10.1103/PhysRevB.84.224105. DOI
Pertsev NA, Dkhil B. Strain sensitivity of polarization in perovskite ferroelectrics. Appl. Phys. Lett. 2008;93:122903. doi: 10.1063/1.2988263. DOI
Ederer C, Spaldin NA. Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics. Phys. Rev. Lett. 2005;95:257601. doi: 10.1103/PhysRevLett.95.257601. PubMed DOI
Pertsev NA, Zembilgotov AG, Tagantsev AK. Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI
DiDomenico M, Jr., Wemple SH. Oxygen octahedra ferroelectrics. I. Theory of electrooptical and nonlinear optical effects. J. Appl. Phys. 1969;40:720. doi: 10.1063/1.1657458. DOI
Eliseev EA, Morozovska AN. General approach to the description of the size effect in ferroelectric nanosystems. J. Mat. Sci. 2009;44:5149. doi: 10.1007/s10853-009-3473-0. DOI
Kalinin SV, Kim Y, Fong DD, Morozovska AN. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 2018;81:036502. doi: 10.1088/1361-6633/aa915a. PubMed DOI
Aguado-Puente P, et al. Model of two-dimensional electron gas formation at ferroelectric interfaces. Phys. Rev. B. 2015;92:035438. doi: 10.1103/PhysRevB.92.035438. DOI
Sulpizio JA, Ilani S, Irvin P, Levy J. Nanoscale Phenomena in Oxide Heterostructures. Annu. Rev. Mater. Res. 2014;44:117. doi: 10.1146/annurev-matsci-070813-113437. DOI
D’Angelo M, et al. Hydrogen-Induced Surface Metallization of SrTiO3(001) Phys. Rev. Lett. 2012;108:116802. doi: 10.1103/PhysRevLett.108.116802. PubMed DOI
Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016;109:495. doi: 10.1016/j.cherd.2016.02.006. DOI
Dejneka A, et al. Optical effects induced by epitaxial tension in lead titanate. Appl. Phys. Lett. 2018;112:031111. doi: 10.1063/1.5013640. DOI
Chernova E, et al. Strain-controlled optical absorption in epitaxial ferroelectric BaTiO3 films. Appl. Phys. Lett. 2015;106:192903. doi: 10.1063/1.4921083. DOI
Tyunina M, et al. Interband transitions in epitaxial ferroelectric films of NaNbO3. Phys. Rev. B. 2015;92:104101. doi: 10.1103/PhysRevB.92.104101. DOI
Tyunina M, et al. Effect of epitaxy on interband transitions in ferroelectric KNbO3. New J. Phys. 2015;17:043048. doi: 10.1088/1367-2630/17/4/043048. DOI
Tyunina M, et al. Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms. Sci. Tech. Adv. Mat. 2015;16:026002. doi: 10.1088/1468-6996/16/2/026002. PubMed DOI PMC