Thermooptical evidence of carrier-stabilized ferroelectricity in ultrathin electrodeless films

. 2018 May 31 ; 8 (1) : 8497. [epub] 20180531

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29855531
Odkazy

PubMed 29855531
PubMed Central PMC5981214
DOI 10.1038/s41598-018-26933-0
PII: 10.1038/s41598-018-26933-0
Knihovny.cz E-zdroje

Ferroelectric films may lose polarization as their thicknesses decrease to a few nanometers because of the depolarizing field that opposes the polarization therein. The depolarizing field is minimized when electrons or ions in the electrodes or the surface/interface layers screen the polarization charge or when peculiar domain configuration is formed. Here, we demonstrate ferroelectric phase transitions using thermooptical studies in ∼5-nm-thick epitaxial Pb0.5Sr0.5TiO3 films grown on different insulating substrates. By comparing theoretical modeling and experimental observations, we show that ferroelectricity is stabilized through redistribution of charge carriers (electrons or holes) inside ultrathin films. The related high-density of screening carriers is confined within a few-nanometers-thick layer in the vicinity of the insulator, thus resembling a two-dimensional carrier gas.

Zobrazit více v PubMed

Hong, S. (ed.) Nanoscale phenomena in ferroelectric thin films. Kluwer Academic Publishers, Boston Dordrecht New York London, 2004.

Ishiwara, H., Okuyama, M., Orimoto, Y. (eds) Ferroelectric Random Access Memories: Fundamentals and Applications. Springer-Verlag, Berlin Heidelberg, 2004.

Dawber M, Rabe KM, Scott JF. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005;77:1083. doi: 10.1103/RevModPhys.77.1083. DOI

Setter N, et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006;100:051606. doi: 10.1063/1.2336999. DOI

Rabe, K. M., Ahn, C. H., Triscone, J. M. (eds) Physics of Ferroelectrics: A Modern Perspective. Springer-Verlag, Berlin Heidelberg, 2007.

Fridkin, V., Ducharme, S. Ferroelectricity at theNanoscale: Basics and Applications. Springer-Verlag, Berlin Heidelberg, 2014.

Tilley, D. R. Finite-size effects on phase transitions in ferroelectrics. In Ferroelectic Thin Films Paz de Araujo, C., Scott, J. F., Taylor, G. W. (eds) Gordon and Breach, Amsterdam, 1996, p. 11–14.

Glinchuk MD, Eliseev EA, Stephanovich VA, Fahri R. Ferroelectric thin films properties - Depolarization field and renormalization of a “bulk” free energy coefficients. J. Appl. Phys. 2003;93:1150. doi: 10.1063/1.1529091. DOI

Eliseev EA, Kalinin SV, Morozovska AN. Finite size effects in ferroelectric-semiconductor thin films under open-circuited electric boundary conditions. J. Appl. Phys. 2015;117:034102. doi: 10.1063/1.4906139. DOI

Lichtensteiger, C. et al. Ferroelectricity in ultrathin film capacitors. in Oxide Ultrathin Films: Science and Technology Pacchioni, G., Valeri, S. (eds) Wiley-VCH, 2012, p. 265–307.

Highland MJ, et al. Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. Phys. Rev. Lett. 2011;107:187602. doi: 10.1103/PhysRevLett.107.187602. PubMed DOI

Stephenson GB, Highland MJ. Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation. Phys. Rev. B. 2011;84:064107. doi: 10.1103/PhysRevB.84.064107. PubMed DOI

Tenne DA, et al. Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy. Science. 2006;313:1614. doi: 10.1126/science.1130306. PubMed DOI

Chisholm MF, Luo W, Oxley MP, Pantelides ST, Lee HN. Atomic-Scale Compensation Phenomena at Polar Interfaces. Phys. Rev. Lett. 2010;105:197602. doi: 10.1103/PhysRevLett.105.197602. PubMed DOI

Hong S, Nakhmanson SM, Fong DD. Screening mechanisms at polar oxide heterointerfaces. Rep. Prog. Phys. 2016;79:076501. doi: 10.1088/0034-4885/79/7/076501. PubMed DOI

Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in ferroic crystals and thin films. Springer, New York, 2010.

Streiffer SK, et al. Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO3 Thin Films. Phys. Rev. Lett. 2002;89:067601. doi: 10.1103/PhysRevLett.89.067601. PubMed DOI

Fong DD, et al. Ferroelectricity in Ultrathin Perovskite Films. Science. 2004;304:1650. doi: 10.1126/science.1098252. PubMed DOI

Ivry Y, Chu DP, Scott JF, Durkan C. Flux Closure Vortexlike Domain Structures in Ferroelectric Thin Films. Phys. Rev. Lett. 2010;104:207602. doi: 10.1103/PhysRevLett.104.207602. PubMed DOI

McQuaid RGP, Gruverman A, Scott JF, Gregg JM. Exploring Vertex Interactions in Ferroelectric Flux-Closure Domains. Nano Lett. 2014;14:4230. doi: 10.1021/nl5006788. PubMed DOI

Tang YL, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science. 2015;348:547. doi: 10.1126/science.1259869. PubMed DOI

Yadav AK, et al. Observation of polar vortices in oxide superlattices. Nature. 2016;530:198. doi: 10.1038/nature16463. PubMed DOI

Chen Z, et al. 180° Ferroelectric Stripe Nanodomains in BiFeO3 Thin Films. Nano Lett. 2015;15:6506. doi: 10.1021/acs.nanolett.5b02031. PubMed DOI

Sharma Y, et al. Long-range Stripe Nanodomains in Epitaxial (110) BiFeO3 Thin Films on (100) NdGaO3 Substrate. Sci. Rep. 2017;7:4857. doi: 10.1038/s41598-017-05055-z. PubMed DOI PMC

Merz WJ. The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals. Phys. Rev. 1949;76:1221. doi: 10.1103/PhysRev.76.1221. DOI

Wiesendanger E. Optical properties of KNbO3. Ferroelectrics. 1970;1:141–148. doi: 10.1080/00150197008241478. DOI

Burns G, Scott BA. Index of refraction in ‘dirty’ displacive ferroelectrics. Solid State Commun. 1973;13:423. doi: 10.1016/0038-1098(73)90622-4. DOI

Fousek J, Petzelt J. Changes of refractive indices of crystals induced by structural phase transitions. Phys. Status Solidi. 1979;55:11. doi: 10.1002/pssa.2210550102. DOI

Burns G, Dacol FH. Polarization in the cubic phase of BaTiO3. Solid State Commun. 1982;42:9. doi: 10.1016/0038-1098(82)91018-3. DOI

Kleemann W, Schafer FJ, Fontana MD. Crystal optical studies of spontaneous and precursor polarization in KNbO3. Phys. Rev. B. 1984;30:1148. doi: 10.1103/PhysRevB.30.1148. PubMed DOI

Kleemann W, Schafer FJ, Rytz D. Crystal optical studies of precursor and spontaneous polarization in PbTiO3. Phys. Rev. B. 1986;34:7873. doi: 10.1103/PhysRevB.34.7873. PubMed DOI

Bhalla AS, et al. Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6Nb2O6: Polarization effects. Phys. Rev. B. 1987;36:2030. doi: 10.1103/PhysRevB.36.2030. PubMed DOI

Korshunov OY, Markovin PA, Pisarev RV. Thermoopitical study of precursor polarization in ferroelectrics with diffuse phase transitions. Ferroelectrics Lett. 1992;13:137. doi: 10.1080/07315179208203334. DOI

Markovin PA, et al. A crystal optical study of phase transitions in Sr1−xBaxTiO3 single crystals. J. Phys.: Condens. Matter. 1996;8:2377.

Trepakov V, Dejneka A, Markovin P, Lynnyk A, Jastrabik L. A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate. New J. Phys. 2009;11:083024. doi: 10.1088/1367-2630/11/8/083024. DOI

Tyunina M, et al. Ferroelectricity in antiferroelectric NaNbO3 crystal. J. Phys.: Condens. Matter. 2014;26:125901. PubMed

Tyunina M, Plekh M, Antonova M, Kalvane A. Ferroelectric transitions in epitaxial Pb0.5Sr0.5TiO3 films studied by dielectric analysis. Phys. Rev. B. 2011;84:224105. doi: 10.1103/PhysRevB.84.224105. DOI

Pertsev NA, Dkhil B. Strain sensitivity of polarization in perovskite ferroelectrics. Appl. Phys. Lett. 2008;93:122903. doi: 10.1063/1.2988263. DOI

Ederer C, Spaldin NA. Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics. Phys. Rev. Lett. 2005;95:257601. doi: 10.1103/PhysRevLett.95.257601. PubMed DOI

Pertsev NA, Zembilgotov AG, Tagantsev AK. Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI

DiDomenico M, Jr., Wemple SH. Oxygen octahedra ferroelectrics. I. Theory of electrooptical and nonlinear optical effects. J. Appl. Phys. 1969;40:720. doi: 10.1063/1.1657458. DOI

Eliseev EA, Morozovska AN. General approach to the description of the size effect in ferroelectric nanosystems. J. Mat. Sci. 2009;44:5149. doi: 10.1007/s10853-009-3473-0. DOI

Kalinin SV, Kim Y, Fong DD, Morozovska AN. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 2018;81:036502. doi: 10.1088/1361-6633/aa915a. PubMed DOI

Aguado-Puente P, et al. Model of two-dimensional electron gas formation at ferroelectric interfaces. Phys. Rev. B. 2015;92:035438. doi: 10.1103/PhysRevB.92.035438. DOI

Sulpizio JA, Ilani S, Irvin P, Levy J. Nanoscale Phenomena in Oxide Heterostructures. Annu. Rev. Mater. Res. 2014;44:117. doi: 10.1146/annurev-matsci-070813-113437. DOI

D’Angelo M, et al. Hydrogen-Induced Surface Metallization of SrTiO3(001) Phys. Rev. Lett. 2012;108:116802. doi: 10.1103/PhysRevLett.108.116802. PubMed DOI

Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016;109:495. doi: 10.1016/j.cherd.2016.02.006. DOI

Dejneka A, et al. Optical effects induced by epitaxial tension in lead titanate. Appl. Phys. Lett. 2018;112:031111. doi: 10.1063/1.5013640. DOI

Chernova E, et al. Strain-controlled optical absorption in epitaxial ferroelectric BaTiO3 films. Appl. Phys. Lett. 2015;106:192903. doi: 10.1063/1.4921083. DOI

Tyunina M, et al. Interband transitions in epitaxial ferroelectric films of NaNbO3. Phys. Rev. B. 2015;92:104101. doi: 10.1103/PhysRevB.92.104101. DOI

Tyunina M, et al. Effect of epitaxy on interband transitions in ferroelectric KNbO3. New J. Phys. 2015;17:043048. doi: 10.1088/1367-2630/17/4/043048. DOI

Tyunina M, et al. Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms. Sci. Tech. Adv. Mat. 2015;16:026002. doi: 10.1088/1468-6996/16/2/026002. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...