Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
27877779
PubMed Central
PMC5036465
DOI
10.1088/1468-6996/16/2/026002
PII: TSTA11661274
Knihovny.cz E-resources
- Keywords
- epitaxial growth, ferroelectric nanofilms, optical properties,
- Publication type
- Journal Article MeSH
Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.
See more in PubMed
Lines M E, Glass A M. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon; 2004.
Uchino K. Ferroelectric Devices. New York: Dekker; 2000.
Boyd R. Nonlinear Optics. New York: Academic; 2008.
Ferraro P, , Grilli S, De Natale P, , editors. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques. Berlin: Springer; 2009.
Poosanaas P, Tonooka K, Uchino K. Mechatronics. 2000;10:467. doi: 10.1016/S0957-4158(99)00073-2. DOI
Knopf G, Otani Y. Optical Nano and Micro Actuator Technology. Boca Raton, FL: CRC Press; 2013.
Huang H. Nat. Photonics. 2010;4:134. doi: 10.1038/nphoton.2010.15. DOI
Yang S Y. Nat. Nanotechnol. 2010;5:143. doi: 10.1038/nnano.2009.451. PubMed DOI
Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S-W. Science. 2009;324:63. doi: 10.1126/science.1168636. PubMed DOI
Kudo A, Miseki Y. Chem. Soc. Rev. 2009;38:253. doi: 10.1039/B800489G. PubMed DOI
Chen C, Ma W, Zhao J. Chem. Soc. Rev. 2010;39:4206. doi: 10.1039/b921692h. PubMed DOI
Choi W S. Nat. Commun. 2012;3:689. doi: 10.1038/ncomms1690. PubMed DOI
Yang X. Adv. Mater. 2012;24:1202. doi: 10.1002/adma.201104078. PubMed DOI
Kreisel J, Alexe M, Thomas P A. Nat. Mater. 2012;11:260. doi: 10.1038/nmat3282. PubMed DOI
Nakayama Y. Nature. 2007;447:1098. doi: 10.1038/nature05921. PubMed DOI
Yan R, Gargas D, Yang P. Nat. Photon. 2009;3:569. doi: 10.1038/nphoton.2009.184. DOI
Qin M, Yao K, Liang Y C. Appl. Phys. Lett. 2008;93:026002. doi: 10.1063/1.2990754. DOI
Guo R. Nat. Commun. 2013;4:1990. doi: 10.1038/ncomms2990. PubMed DOI PMC
Wessels B W. Annu. Rev. Mater. Res. 2007;37:659. doi: 10.1146/annurev.matsci.37.052506.084226. DOI
Dicken M J. Nano Lett. 2008;8:4048. doi: 10.1021/nl802981q. PubMed DOI
Abel S. Nat. Commun. 2013;4:1671. doi: 10.1038/ncomms2695. PubMed DOI
Singh J. Electronic and Optoelectronic Properties of Semiconductor Structures. New York: Cambridge University Press; 2003.
Cavallo F, Lagally M G. Nanoscale Res. Lett. 2012;7:628. doi: 10.1186/1556-276X-7-628. PubMed DOI PMC
Boztug C. Small. 2013;9:622. doi: 10.1002/smll.201201090. PubMed DOI
Walsh A, Catlow C R A, Zhang K H L, Egdell R G. Phys. Rev. B. 2011;83:026002. doi: 10.1103/PhysRevB.83.161202. DOI
Fridkin V M. Ferroelectric Semiconductors. New York: Springer; 1979.
DiDomenico M, Wemple S H. Phys. Rev. 1968;166:565. doi: 10.1103/PhysRev.166.565. DOI
Wemple S H. Phys. Rev. B. 1970;2:2679. doi: 10.1103/PhysRevB.2.2679. DOI
Chen P. Appl. Phys. Lett. 2010;96:026002. doi: 10.1063/1.3364133. DOI
Basu S R. Appl. Phys. Lett. 2008;92:026002. doi: 10.1063/1.2887908. DOI
Yun K Y, Ricinschi D, Kanashima T, Noda M, Okuyama M. Japan. J. Appl. Phys. 2004;43:L647. doi: 10.1143/JJAP.43.L647. DOI
Tyunina M. J. Phys.: Condens. Matter. 2009;21:026002. doi: 10.1088/0953-8984/21/23/232203. PubMed DOI
Dejneka A. Phys. Solid State. 2010;52:2082. doi: 10.1134/S1063783410100124. DOI
Tyunina M. Phys. Rev. Lett. 2010;104:026002. doi: 10.1103/PhysRevLett.104.227601. PubMed DOI
Berger R F, Fennie C J, Neaton J B. Phys. Rev. Lett. 2011;107:026002. doi: 10.1103/PhysRevLett.107.146804. PubMed DOI
Parker W D, Rondinelli J M, Nakhmanson S M. Phys. Rev. B. 2011;84:026002. doi: 10.1103/PhysRevB.84.245126. DOI
Saito Y. Nature. 2004;432:84. doi: 10.1038/nature03028. PubMed DOI
DelRe E, Spinozzi E, Agranat A J, Conti C. Nat. Photon. 2011;5:39. doi: 10.1038/nphoton.2010.285. DOI
Sukhorukov A. Nat. Photon. 2011;5:4. doi: 10.1038/nphoton.2010.299. DOI
Hellwege K H, , Hellwege A M, , editors. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Crystal and Solid State Physics. Berlin: Springer; 1981.
Ohring M. The Materials Science of Thin Films. San Diego, CA: Academic; 2002.
Diéguez O, Rabe K M, Vanderbilt D. Phys. Rev. B. 2005;72:026002. doi: 10.1103/PhysRevB.72.144101. DOI
Narkilahti J, Tyunina M. J. Phys.: Condens. Matter. 2012;24:026002. doi: 10.1088/0953-8984/24/32/325901. PubMed DOI
Koch C T, Ozdol V B, van Aken P A. Appl. Phys. Lett. 2010;96:026002. doi: 10.1063/1.3337090. DOI
Hilfiker J. J. Vac. Sci. Technol. A. 2003;21:1103. doi: 10.1116/1.1569928. DOI
Johs B, Herzinger C M. Phys. Stat. Sol. C. 2008;5:1031. doi: 10.1002/pssc.200777755. DOI
2008 Guide to Using WVASE 32: Spectroscopic Ellipsometry Data Acquisition and Analysis Software (Lincoln, NE: J A Woollam Inc.)
Fujiwara H, Koh J, Rovira P I, Collins R W. Phys. Rev. B. 2000;61:026002. doi: 10.1103/PhysRevB.61.10832. DOI
Hilfiker J, Singh N, Tiwald T. Thin Solid Films. 2008;516:7979. doi: 10.1016/j.tsf.2008.04.060. DOI
Wemple S H. Phys. Rev. 1965;137:026002. doi: 10.1103/PhysRev.137.A1575. DOI
Dhar A, Mansingh A. J. Appl. Phys. 1990;68:5804. doi: 10.1063/1.346951. DOI
Yamazoe S, Sakurai H, Fukada M, Adachi H, Wada T. Appl. Phys. Lett. 2009;95:026002. doi: 10.1063/1.3205103. DOI
Tyunina M. Phys. Rev. B. 2012;86:026002. doi: 10.1103/PhysRevB.86.224105. DOI
Pertsev N A, Zembilgotov A G, Tagantsev A K. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI
Bennett J W, Grinberg I, Rappe A M. Phys. Rev. B. 2009;79:026002. doi: 10.1103/PhysRevB.79.235115. DOI
Qi T, Grinberg I, Rappe A M. Phys. Rev. B. 2011;83:026002. doi: 10.1103/PhysRevB.83.224108. DOI
Berger R F, Neaton J B. Phys. Rev. B. 2012;86:026002. doi: 10.1103/PhysRevB.86.165211. DOI
Cabuk S, Akkus H, Mamedov A M. Physica B. 2007;394:81. doi: 10.1016/j.physb.2007.02.012. DOI
Benrekia A R, Benkhettou N, Nassour A. Physica B. 2012;407:2632. doi: 10.1016/j.physb.2012.04.013. DOI
Okoye C M I. J. Phys: Condens. Matter. 2003;15:5945. doi: 10.1088/0953-8984/15/35/304. DOI
Sinha T P. Physica B. 2012;407:4615. doi: 10.1016/j.physb.2012.09.011. DOI
Liu G. J. Appl. Phys. 2011;109:026002. doi: 10.1063/1.3554697. DOI
Li P, Ouyang S, Xi G, Kako T, Ye J. J. Phys. Chem. C. 2012;116:7621. doi: 10.1021/jp210106b. DOI
Wang F, Grinberg I, Rappe A M. Appl. Phys. Lett. 2014;104:026002. doi: 10.1063/1.4871707. DOI
Marsman M, Paier J, Stroppa A, Kresse G. J. Phys.: Condens. Matter. 2008;20:026002. doi: 10.1088/0953-8984/20/6/064201. PubMed DOI
Shishkin M, Kresse G. Phys Rev. B. 2007;75:026002. doi: 10.1103/PhysRevB.75.235102. PubMed DOI
Sakuma R, Werner P, Aryasetiawan F. Phys. Rev. B. 2013;88:026002. doi: 10.1103/PhysRevB.88.235110. DOI
Tuning optical absorption in perovskite (K,Na)NbO3 ferroelectrics
Thermooptical evidence of carrier-stabilized ferroelectricity in ultrathin electrodeless films
Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range