• This record comes from PubMed

Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms

. 2015 Apr ; 16 (2) : 026002. [epub] 20150408

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Perovskite-type ferroelectric (FE) crystals are wide bandgap materials with technologically valuable optical and photoelectric properties. Here, versatile engineering of electronic transitions is demonstrated in FE nanofilms of KTaO3, KNbO3 (KNO), and NaNbO3 (NNO) with a thickness of 10-30 unit cells. Control of the bandgap is achieved using heteroepitaxial growth of new structural phases on SrTiO3 (001) substrates. Compared to bulk crystals, anomalous bandgap narrowing is obtained in the FE state of KNO and NNO films. This effect opposes polarization-induced bandgap widening, which is typically found for FE materials. Transmission electron microscopy and spectroscopic ellipsometry measurements indicate that the formation of higher-symmetry structural phases of KNO and NNO produces the desirable red shift of the absorption spectrum towards visible light, while simultaneously stabilizing robust FE order. Tuning of optical properties in FE films is of interest for nanoscale photonic and optoelectronic devices.

See more in PubMed

Lines M E, Glass A M. Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon; 2004.

Uchino K. Ferroelectric Devices. New York: Dekker; 2000.

Boyd R. Nonlinear Optics. New York: Academic; 2008.

Ferraro P, , Grilli S, De Natale P, , editors. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques. Berlin: Springer; 2009.

Poosanaas P, Tonooka K, Uchino K. Mechatronics. 2000;10:467. doi: 10.1016/S0957-4158(99)00073-2. DOI

Knopf G, Otani Y. Optical Nano and Micro Actuator Technology. Boca Raton, FL: CRC Press; 2013.

Huang H. Nat. Photonics. 2010;4:134. doi: 10.1038/nphoton.2010.15. DOI

Yang S Y. Nat. Nanotechnol. 2010;5:143. doi: 10.1038/nnano.2009.451. PubMed DOI

Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S-W. Science. 2009;324:63. doi: 10.1126/science.1168636. PubMed DOI

Kudo A, Miseki Y. Chem. Soc. Rev. 2009;38:253. doi: 10.1039/B800489G. PubMed DOI

Chen C, Ma W, Zhao J. Chem. Soc. Rev. 2010;39:4206. doi: 10.1039/b921692h. PubMed DOI

Choi W S. Nat. Commun. 2012;3:689. doi: 10.1038/ncomms1690. PubMed DOI

Yang X. Adv. Mater. 2012;24:1202. doi: 10.1002/adma.201104078. PubMed DOI

Kreisel J, Alexe M, Thomas P A. Nat. Mater. 2012;11:260. doi: 10.1038/nmat3282. PubMed DOI

Nakayama Y. Nature. 2007;447:1098. doi: 10.1038/nature05921. PubMed DOI

Yan R, Gargas D, Yang P. Nat. Photon. 2009;3:569. doi: 10.1038/nphoton.2009.184. DOI

Qin M, Yao K, Liang Y C. Appl. Phys. Lett. 2008;93:026002. doi: 10.1063/1.2990754. DOI

Guo R. Nat. Commun. 2013;4:1990. doi: 10.1038/ncomms2990. PubMed DOI PMC

Wessels B W. Annu. Rev. Mater. Res. 2007;37:659. doi: 10.1146/annurev.matsci.37.052506.084226. DOI

Dicken M J. Nano Lett. 2008;8:4048. doi: 10.1021/nl802981q. PubMed DOI

Abel S. Nat. Commun. 2013;4:1671. doi: 10.1038/ncomms2695. PubMed DOI

Singh J. Electronic and Optoelectronic Properties of Semiconductor Structures. New York: Cambridge University Press; 2003.

Cavallo F, Lagally M G. Nanoscale Res. Lett. 2012;7:628. doi: 10.1186/1556-276X-7-628. PubMed DOI PMC

Boztug C. Small. 2013;9:622. doi: 10.1002/smll.201201090. PubMed DOI

Walsh A, Catlow C R A, Zhang K H L, Egdell R G. Phys. Rev. B. 2011;83:026002. doi: 10.1103/PhysRevB.83.161202. DOI

Fridkin V M. Ferroelectric Semiconductors. New York: Springer; 1979.

DiDomenico M, Wemple S H. Phys. Rev. 1968;166:565. doi: 10.1103/PhysRev.166.565. DOI

Wemple S H. Phys. Rev. B. 1970;2:2679. doi: 10.1103/PhysRevB.2.2679. DOI

Chen P. Appl. Phys. Lett. 2010;96:026002. doi: 10.1063/1.3364133. DOI

Basu S R. Appl. Phys. Lett. 2008;92:026002. doi: 10.1063/1.2887908. DOI

Yun K Y, Ricinschi D, Kanashima T, Noda M, Okuyama M. Japan. J. Appl. Phys. 2004;43:L647. doi: 10.1143/JJAP.43.L647. DOI

Tyunina M. J. Phys.: Condens. Matter. 2009;21:026002. doi: 10.1088/0953-8984/21/23/232203. PubMed DOI

Dejneka A. Phys. Solid State. 2010;52:2082. doi: 10.1134/S1063783410100124. DOI

Tyunina M. Phys. Rev. Lett. 2010;104:026002. doi: 10.1103/PhysRevLett.104.227601. PubMed DOI

Berger R F, Fennie C J, Neaton J B. Phys. Rev. Lett. 2011;107:026002. doi: 10.1103/PhysRevLett.107.146804. PubMed DOI

Parker W D, Rondinelli J M, Nakhmanson S M. Phys. Rev. B. 2011;84:026002. doi: 10.1103/PhysRevB.84.245126. DOI

Saito Y. Nature. 2004;432:84. doi: 10.1038/nature03028. PubMed DOI

DelRe E, Spinozzi E, Agranat A J, Conti C. Nat. Photon. 2011;5:39. doi: 10.1038/nphoton.2010.285. DOI

Sukhorukov A. Nat. Photon. 2011;5:4. doi: 10.1038/nphoton.2010.299. DOI

Hellwege K H, , Hellwege A M, , editors. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Crystal and Solid State Physics. Berlin: Springer; 1981.

Ohring M. The Materials Science of Thin Films. San Diego, CA: Academic; 2002.

Diéguez O, Rabe K M, Vanderbilt D. Phys. Rev. B. 2005;72:026002. doi: 10.1103/PhysRevB.72.144101. DOI

Narkilahti J, Tyunina M. J. Phys.: Condens. Matter. 2012;24:026002. doi: 10.1088/0953-8984/24/32/325901. PubMed DOI

Koch C T, Ozdol V B, van Aken P A. Appl. Phys. Lett. 2010;96:026002. doi: 10.1063/1.3337090. DOI

Hilfiker J. J. Vac. Sci. Technol. A. 2003;21:1103. doi: 10.1116/1.1569928. DOI

Johs B, Herzinger C M. Phys. Stat. Sol. C. 2008;5:1031. doi: 10.1002/pssc.200777755. DOI

2008 Guide to Using WVASE 32: Spectroscopic Ellipsometry Data Acquisition and Analysis Software (Lincoln, NE: J A Woollam Inc.)

Fujiwara H, Koh J, Rovira P I, Collins R W. Phys. Rev. B. 2000;61:026002. doi: 10.1103/PhysRevB.61.10832. DOI

Hilfiker J, Singh N, Tiwald T. Thin Solid Films. 2008;516:7979. doi: 10.1016/j.tsf.2008.04.060. DOI

Wemple S H. Phys. Rev. 1965;137:026002. doi: 10.1103/PhysRev.137.A1575. DOI

Dhar A, Mansingh A. J. Appl. Phys. 1990;68:5804. doi: 10.1063/1.346951. DOI

Yamazoe S, Sakurai H, Fukada M, Adachi H, Wada T. Appl. Phys. Lett. 2009;95:026002. doi: 10.1063/1.3205103. DOI

Tyunina M. Phys. Rev. B. 2012;86:026002. doi: 10.1103/PhysRevB.86.224105. DOI

Pertsev N A, Zembilgotov A G, Tagantsev A K. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI

Bennett J W, Grinberg I, Rappe A M. Phys. Rev. B. 2009;79:026002. doi: 10.1103/PhysRevB.79.235115. DOI

Qi T, Grinberg I, Rappe A M. Phys. Rev. B. 2011;83:026002. doi: 10.1103/PhysRevB.83.224108. DOI

Berger R F, Neaton J B. Phys. Rev. B. 2012;86:026002. doi: 10.1103/PhysRevB.86.165211. DOI

Cabuk S, Akkus H, Mamedov A M. Physica B. 2007;394:81. doi: 10.1016/j.physb.2007.02.012. DOI

Benrekia A R, Benkhettou N, Nassour A. Physica B. 2012;407:2632. doi: 10.1016/j.physb.2012.04.013. DOI

Okoye C M I. J. Phys: Condens. Matter. 2003;15:5945. doi: 10.1088/0953-8984/15/35/304. DOI

Sinha T P. Physica B. 2012;407:4615. doi: 10.1016/j.physb.2012.09.011. DOI

Liu G. J. Appl. Phys. 2011;109:026002. doi: 10.1063/1.3554697. DOI

Li P, Ouyang S, Xi G, Kako T, Ye J. J. Phys. Chem. C. 2012;116:7621. doi: 10.1021/jp210106b. DOI

Wang F, Grinberg I, Rappe A M. Appl. Phys. Lett. 2014;104:026002. doi: 10.1063/1.4871707. DOI

Marsman M, Paier J, Stroppa A, Kresse G. J. Phys.: Condens. Matter. 2008;20:026002. doi: 10.1088/0953-8984/20/6/064201. PubMed DOI

Shishkin M, Kresse G. Phys Rev. B. 2007;75:026002. doi: 10.1103/PhysRevB.75.235102. PubMed DOI

Sakuma R, Werner P, Aryasetiawan F. Phys. Rev. B. 2013;88:026002. doi: 10.1103/PhysRevB.88.235110. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...