• This record comes from PubMed

Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range

. 2016 ; 11 (4) : e0153261. [epub] 20160413

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15-4.30 eV and differ by 0.2-0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films.

See more in PubMed

Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford University Press; 1977.

Tejuca LG, Fierro J. Properties and applications of perovskite-type oxides. CRC Press; 2000.

Guo R, You L, Zhou Y, Lim ZS, Zou X, Chen L, et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nature communications. 2013;4 10.1038/ncomms2990 PubMed DOI PMC

Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano letters. 2008;8(11):4048–4052. 10.1021/nl802981q PubMed DOI

Abel S, Stöferle T, Marchiori C, Rossel C, Rossell MD, Erni R, et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nature communications. 2013;4:1671 10.1038/ncomms2695 PubMed DOI

Qin M, Yao K, Liang YC. High efficient photovoltaics in nanoscaled ferroelectric thin films. Applied Physics Letters. 2008;93(12):122904 10.1063/1.2990754 DOI

Pertsev N, Zembilgotov A, Tagantsev A. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Physical review letters. 1998;80(9):1988 10.1103/PhysRevLett.80.1988 DOI

Diéguez O, Rabe KM, Vanderbilt D. First-principles study of epitaxial strain in perovskites. Physical Review B. 2005;72(14):144101 10.1103/PhysRevB.72.144101 DOI

Pertsev N, Dkhil B. Strain sensitivity of polarization in perovskite ferroelectrics. Applied Physics Letters. 2008;93(12):2903 10.1063/1.2988263 DOI

Ederer C, Spaldin NA. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Physical review letters. 2005;95(25):257601 10.1103/PhysRevLett.95.257601 PubMed DOI

Berger RF, Fennie CJ, Neaton JB. Band Gap and Edge Engineering via Ferroic Distortion and Anisotropic Strain: The Case of SrTiO3. Physical review letters. 2011;107(14):146804 10.1103/PhysRevLett.107.146804 PubMed DOI

Wang F, Grinberg I, Rappe AM. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics. Applied Physics Letters. 2014;104(15):152903 10.1063/1.4871707 DOI

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature. 2004;432(7013):84–87. 10.1038/nature03028 PubMed DOI

Sun H, Peng D, Wang X, Tang M, Zhang Q, Yao X. Green and red emission for (K0.5Na0.5)NbO3: Pr ceramics. Journal of Applied Physics. 2012;111(4):046102 10.1063/1.3686193 DOI

Wu X, Chung TH, Kwok KW. Enhanced visible and mid-IR emissions in Er/Yb-codoped K0.5Na0.5NbO3 ferroelectric ceramics. Ceramics International. 2015;41(10, Part B):14041–14048. 10.1016/j.ceramint.2015.07.018 DOI

Blomqvist M, Khartsev S, Grishin A, Petraru A, Buchal C. Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates. Applied physics letters. 2003;82(3):439–441. 10.1063/1.1539295 DOI

Kroupa J, Petzelt J, Malic B, Kosec M. Electro-optic properties of KNN-STO lead-free ceramics. Journal of Physics D: Applied Physics. 2005;38(5):679 10.1088/0022-3727/38/5/003 DOI

Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M. Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sciences. 2009;11(2):320–324. 10.1016/j.solidstatesciences.2008.07.011 DOI

Woollam JA, Hilfiker JN, Tiwald TE, Bungay CL, Synowicki RA, Meyer DE, et al. Variable angle spectroscopic ellipsometry in the vacuum ultraviolet. In: International Symposium on Optical Science and Technology. International Society for Optics and Photonics; 2000. p. 197–205.

Woollam J. Guide to Using WVASE32 Spectroscopic Ellipsomtry Data Acquisition and Analysis Software. JA Woollam Co., Inc.; 2005.

Gautam LK, Haneef H, Junda MM, John DBS, Podraza NJ. Approach for extracting complex dielectric function spectra in weakly-absorbing regions. Thin Solid Films. 2014;571, Part 3:548–553. 6th International Conference on Spectroscopic Ellipsometry (ICSE-VI). 10.1016/j.tsf.2014.03.020 DOI

Fujiwara H, Koh J, Rovira PI, Collins RW. Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films. Phys Rev B. 2000. April;61:10832–10844. 10.1103/PhysRevB.61.10832 DOI

DiDomenico M Jr, Wemple S. Optical properties of perovskite oxides in their paraelectric and ferroelectric phases. Physical Review. 1968;166(2):565 10.1103/PhysRev.166.565 DOI

Wemple S. Polarization Fluctuations and the Optical-Absorption Edge in BaTiO3. Physical Review B. 1970;2(7):2679 10.1103/PhysRevB.2.2679 DOI

Dow JD, Redfield D. Theory of exponential absorption edges in ionic and covalent solids. Physical Review Letters. 1971;26(13):762 10.1103/PhysRevLett.26.762 DOI

Tompkins H, Irene EA. Handbook of ellipsometry. William Andrew; 2005.

Tauc J, Grigorovici R, Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b). 1966;15(2):627–637. 10.1002/pssb.19660150224 DOI

Brews J. Energy band changes in perovskites due to lattice polarization. Physical Review Letters. 1967;18(16):662 10.1103/PhysRevLett.18.662 DOI

Tyunina M, Yao L, Chvostova D, Kocourek T, Jelinek M, Dejneka A, et al. Effect of epitaxy on interband transitions in ferroelectric KNbO3. New Journal of Physics. 2015;17(4):043048 10.1088/1367-2630/17/4/043048 DOI

Tyunina M, Yao L, Chvostova D, Dejneka A, Kocourek T, Jelinek M, et al. Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms. Science and Technology of Advanced Materials. 2015;16(2):026002 10.1088/1468-6996/16/2/026002 PubMed DOI PMC

Chernova E, Pacherova O, Chvostova D, Dejneka A, Kocourek T, Jelinek M, et al. Strain-controlled optical absorption in epitaxial ferroelectric BaTiO3 films. Applied Physics Letters. 2015;106(19):192903 10.1063/1.4921083 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...