Upregulation of the mitochondrial alternative oxidase pathway improves PSII function and photosynthetic electron transport in tomato seedlings under chilling stress

. 2022 ; 60 (2) : 271-279. [epub] 20220331

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39650763

The aim of this study was to explore how the mitochondrial alternative oxidase (AOX) pathway alleviates photoinhibition in chilled tomato (Solanum lycopersicum) seedlings. Chilling induced photoinhibition in tomato seedlings despite the increases in thermal energy dissipation and cyclic electron flow around PSI (CEF-PSI). Chilling inhibited the function of PSII and blocked electron transport at the PSII acceptor side, however, it did not affect the oxygen-evolving complex on the donor side of PSII. Upregulation of the AOX pathway protects against photoinhibition by improving PSII function and photosynthetic electron transport in tomato seedlings under chilling stress. The AOX pathway maintained the open state of PSII and the stability of the entire photosynthetic electron transport chain. Moreover, the protective role of the AOX pathway on PSII was more important than that on PSI. However, inhibition of the AOX pathway could be compensated by increasing CEF-PSI activity under chilling stress.

Zobrazit více v PubMed

Akhter M.S., Noreen S., Mahmood S. et al. : Influence of salinity stress on PSII in barley (

Alber N.A., Vanlerberghe G.C.: The flexibility of metabolic interactions between chloroplasts and mitochondria in PubMed DOI

Allakhverdiev S.I.: Recent progress in the studies of structure and function of photosystem II. – J. Photoch. Photobio. B 104: 1-8, 2011. https://www.sciencedirect.com/science/article/pii/S1011134411000868?via%3Dihub PubMed

Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. – Trends Plant Sci. 6: 36-42, 2001. https://www.sciencedirect.com/science/article/pii/S1360138500018082?via%3Dihub PubMed

Analin B., Mohanan A., Bakka K., Challabathula D.: Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. – Plant Physiol. Bioch. 154: 248-259, 2020. https://www.sciencedirect.com/science/article/pii/S0981942820302461?via%3Dihub PubMed

Bartoli C.G., Gomez F., Gergoff G. et al. : Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. – J. Exp. Bot. 56: 1269-1276, 2005. https://academic.oup.com/jxb/article/56/415/1269/493725 PubMed

Bertamini M., Muthuchelian K., Rubinigg M. et al. : Photoinhibition of photosynthesis in leaves of grapevine (

Challabathula D., Analin B., Mohanan A., Bakka K.: Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathway of mitochondrial oxidative electron transport. – J. Plant Physiol. 268: 153583, 2022. https://www.sciencedirect.com/science/article/pii/S0176161721002224?via%3Dihub PubMed

Chen S., Strasser R.J., Qiang S.: PubMed

Cheng D., Gao H., Zhang L.: Upregulation of mitochondrial alternative oxidase pathway protects photosynthetic apparatus against photodamage under chilling stress in

Cheng D.D., Zhang L.T.: Mitochondrial alternative oxidase pathway acts as an electron sink during photosynthetic induction in

Clifton R., Lister R., Parker K.L. et al. : Stress-induced co-expression of alternative respiratory chain components in PubMed DOI

Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al. : Exploration of chlorophyll PubMed PMC

Dahal K., Martyn G.D., Vanlerberghe G.C.: Improved photosynthetic performance during severe drought in PubMed DOI

Dahal K., Vanlerberghe G.C.: Improved chloroplast energy balance during water deficit enhances plant growth: more crop per drop. – J. Exp. Bot. 69: 1183-1197, 2018. https://academic.oup.com/jxb/article/69/5/1183/4769838?login=true PubMed PMC

Florez-Sarasa I., Flexas J., Rasmusson A.G. et al. : PubMed DOI

Gan P., Liu F., Li R.B. et al. : Chloroplasts – beyond energy capture and carbon fixation: tuning of photosynthesis in response to chilling stress. – Int. J. Mol. Sci. 20: 5046, 2019. https://www.mdpi.com/1422-0067/20/20/5046 PubMed PMC

Gandin A., Duffes C., Day D.A., Cousins A.B.: The absence of alternative oxidase AOX1a results in altered response of photosynthetic carbon assimilation to increasing CO PubMed

Garmash E.V.: Role of mitochondrial alternative oxidase in the regulation of cellular homeostasis during development of photosynthetic function in greening leaves. – Plant Biol. 23: 221-228, 2021. https://onlinelibrary.wiley.com/doi/10.1111/plb.13217 PubMed DOI

Giraud E., Ho L.H.M., Clifton R. et al. : The absence of ALTERNATIVE OXIDASE1a in PubMed PMC

Grabelnych O.I., Borovik O.A., Tauson E.L. et al. : Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. – Biochemistry-Moscow 79: 506-519, 2014. https://link.springer.com/article/10.1134/S0006297914060030 PubMed DOI

Guo Y., Zhang Y., Liu Y. et al. : Effect of AtLFNR1 deficiency on chlorophyll

Hu W.H., Yan X.H., He Y., Ye X.L.: Role of alternative oxidase pathway in protection against drought-induced photoinhibition in pepper leaves. – Photosynthetica 56: 1297-1303, 2018. https://ps.ueb.cas.cz/artkey/phs-201804-0035_role-of-alternative-oxidase-pathway-in-protection-against-drought-induced-photoinhibition-in-pepper-leaves.php

Hu W.H., Yan X.H., Yu J.Q.: Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity. – J. Hortic. Sci. Biotech. 92: 31-38, 2017. https://www.tandfonline.com/doi/abs/10.1080/14620316.2016.1219239 DOI

Huang W., Zhang S.B., Cao K.F.: The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. – Photosynth. Res. 103: 175-182, 2010. https://link.springer.com/article/10.1007/s11120-010-9539-7 PubMed DOI

Ikkonen E.N., Grabelnykh O.I., Sherudilo E.G., Shibaeva T.G.: Salicylhydroxamic acid-resistant and sensitive components of respiration in chilling-sensitive plants subjected to a daily short-term temperature drop. – Russ. J. Plant Physiol. 67: 60-67, 2020. https://link.springer.com/article/10.1134/S1021443719050066 DOI

Jiang Z.X., Watanabe C.K.A., Miyagi A. et al. : Mitochondrial AOX supports redox balance of photosynthetic electron transport, primary metabolite balance, and growth in PubMed PMC

Kiener C.M., Bramlage W.J.: Temperature effects on the activity of the alternative respiratory pathway in chill-sensitive PubMed PMC

Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of Q PubMed

Lei Y., Zheng Y., Dai K. et al. : Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. – Trees 28: 923-933, 2014. https://link.springer.com/article/10.1007/s00468-014-1007-0 DOI

Li J.W., Zhang S.B.: Differences in the responses of photosystems I and II in PubMed DOI PMC

Lyons J.M.: Chilling injury in plants. – Ann. Rev. Plant Physio. 24: 445-466, 1973. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.24.060173.002305 DOI

Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. https://academic.oup.com/jxb/article/51/345/659/652534 PubMed

Noguchi K., Yoshida K.: Interaction between photosynthesis and respiration in illuminated leaves. – Mitochondrion 8: 87-99, 2008. https://www.sciencedirect.com/science/article/pii/S1567724907002474?via%3Dihub PubMed

Nunes-Nesi A., Sulpice R., Gibon Y., Fernie A.R.: The enigmatic contribution of mitochondrial function in photosynthesis. – J. Exp. Bot. 59: 1675-1684, 2008. https://academic.oup.com/jxb/article/59/7/1675/641429 PubMed

Ort D.R., Baker N.R.: A photoprotective role for O PubMed

Raghavendra A.S., Padmasree K.: Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. – Trends Plant Sci. 8: 546-553, 2003. https://www.sciencedirect.com/science/article/pii/S1360138503002474?via%3Dihub PubMed

Ramazan S., Bhat H.A., Zargar M.A. et al. : Combined gas exchange characteristic, chlorophyll fluorescence and response curves as selection traits for temperature tolerance in maize genotypes. – Photosynth. Res. 150: 213-225, 2021. https://link.springer.com/article/10.1007/s11120-021-00829-z PubMed DOI

Sonoike K.: Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. – Plant Cell Physiol. 37: 239-247, 1996. https://academic.oup.com/pcp/article/37/3/239/1930802

Strasser R.J., Srivastava A., Govindjee.: Polyphasic chlorophyll DOI

Takagi D., Amako K., Hashiguchi M. et al. : Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. – Plant J. 91: 306-324, 2017. https://onlinelibrary.wiley.com/doi/10.1111/tpj.13566 PubMed DOI

Umbach A.L., Fiorani F., Siedow J.N.: Characterization of transformed PubMed PMC

Vanlerberghe G.C., Cvetkovska M., Wang J.: Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? – Physiol. Plantarum 137: 392-406, 2009. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2009.01254.x PubMed DOI

Vanlerberghe G.C., Dahal K., Alber N. et al. : Photosynthesis, respiration and growth: a carbon and energy balancing act for alternative oxidase. – Mitochondrion 52: 197-211, 2020. https://www.sciencedirect.com/science/article/pii/S1567724919303289?via%3Dihub PubMed

Vishwakarma A., Bashyam L., Senthilkumaran B. et al. : Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in PubMed

Watanabe C.K.A., Yamori W., Takahashi S. et al. : Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway. – Plant Cell Physiol. 57: 1426-1431, 2016. https://academic.oup.com/pcp/article/57/7/1426/2755845 PubMed

Yamori W., Sakata N., Suxuki Y. et al. : Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. – Plant J. 68: 966-976, 2011. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04747.x PubMed DOI

Yoshida K., Terashima I., Noguchi K.: Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. – Plant Cell Physiol. 48: 606-614, 2007. https://academic.oup.com/pcp/article/48/4/606/2756913 PubMed

Yoshida K., Watanabe C.K., Terashima I., Noguchi K.: Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in PubMed DOI

Yu J.Q., Matsui Y.: Effects of roots exudates and allelochemicals on ion uptake by cucumber seedlings. – J. Chem. Ecol. 23: 817-827, 1997. https://link.springer.com/article/10.1023/B:JOEC.0000006413.98507.55 DOI

Zhang L.T., Xu R., Liu J.G.: Efficacy of botanical pesticide for rotifer extermination during the cultivation of

Zhang L.T., Zhang Z.S., Gao H.Y. et al. : The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in PubMed DOI PMC

Zheng J., Fang C., Ru L. et al. : Glutathione-ascorbate cycle and photosynthetic electronic transfer in alternative oxidase-manipulated waterlogging tolerance in watermelon seedlings. – Horticulturae 7: 130, 2021. https://www.mdpi.com/2311-7524/7/6/130

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...