Tuning optical absorption in perovskite (K,Na)NbO3 ferroelectrics
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39444432
PubMed Central
PMC11492214
DOI
10.1039/d4ma00396a
PII: d4ma00396a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The ability to tailor the electronic band structure and optical absorption by appropriate cationic substitution in perovskite oxide ferroelectrics is essential for many advanced electronic and optoelectronic applications of these materials. Here, we explored weak (Ba,Ni)-doping for reducing optical bandgaps in (K,Na)NbO3 ferroelectric films and ceramics. The optical absorption in the broad spectral range of (0.7-8.8) eV was investigated in polycrystalline doped, pure, and oxygen deficient films, in doped epitaxial films grown on different substrates, and in doped ceramics. By comparing optical properties of all films and ceramics, it was established that 1-2 at% of cationic substitutions or up to 10 at % of oxygen vacancies have no detectable effect on the direct (∼4.5 eV) and indirect (∼3.9 eV) gaps. Concurrently, substantial sub-gap absorption was revealed and ascribed to structural band tailing in epitaxial films and ceramics. It was suggested that owing to fundamental strain-property couplings in perovskite oxide ferroelectrics, inhomogeneities of lattice strain can lead to increased sub-gap absorption. The uncovered structurally induced sub-gap optical absorption can be relevant for other ferroelectric ceramics and thin films as well as for related perovskite oxides.
Zobrazit více v PubMed
Lines C. M. E. and Glass A. M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, 2004
Xu Y., Ferroelectric Materials and Their Applications, Elsevier, 1991
Scott J. F. Applications of Modern Ferroelectrics. Science. 2007;315:954. doi: 10.1126/science.1129564. PubMed DOI
Huang H. and Scott J. F., Ferroelectric Materials for Energy Applications, Wiley-VCH, 2019
Wei X. K. Domingo N. Sun Y. Balke N. Dunin-Borkowski R. E. Mayer J. Adv. Energy Mater. 2022;12:2201199. doi: 10.1002/aenm.202201199. DOI
Boda M. A. Withers R. L. Liu Y. Ye J. Yi Z. J. Mater. Chem. A. 2022;10:22977. doi: 10.1039/D2TA05294F. DOI
Wei H. Yang C. Ya. Wu B. Cao M. Lorenz M. Grundmann M. J. Mater. Chem. C. 2020;8:15575. doi: 10.1039/D0TC02811H. DOI
Kumar A. Kumar A. Krishnan V. ACS Catal. 2020;10:10253. doi: 10.1021/acscatal.0c02947. DOI
Zhou W. Deng H. Yu L. Yang P. Chu J. Ceram. Int. 2015;41:13389. doi: 10.1016/j.ceramint.2015.07.127. DOI
Bai Y. Tofel P. Palosaari J. Jantunen H. Juuti J. Adv. Mater. 2017;29:1700767. doi: 10.1002/adma.201700767. PubMed DOI
Xie P. Yang F. Li R. Ai C. Lin C. Lin S. Int. J. Hydrogen Energy. 2019;44:11695. doi: 10.1016/j.ijhydene.2019.03.145. DOI
Alkathy M. S. Zabotto F. L. Raju K. C. J. Eiras J. A. Mater. Chem. Phys. 2022;275:125235. doi: 10.1016/j.matchemphys.2021.125235. DOI
Hao S. Yao M. Vitali-Derrien G. Gemeiner P. Otoničar M. Ruello P. Bouyanfif H. Janolin P.-E. Dkhil B. Paillard C. J. Mater. Chem. C. 2022;10:227. doi: 10.1039/D1TC04250E. DOI
Bai Y. Kistanov A. A. Cao W. Juuti J. J. Phys. Chem. C. 2021;125:8890. doi: 10.1021/acs.jpcc.1c01845. DOI
Bai Y. Open Ceram. 2021;5:100079. doi: 10.1016/j.oceram.2021.100079. DOI
Tyunina M. Pacherova O. Nepomniashchaia N. Vetokhina V. Cichon S. Kocourek T. Dejneka A. Phys. Chem. Chem. Phys. 2020;22:24796. doi: 10.1039/D0CP03644G. PubMed DOI
Tyunina M. Rusevich L. L. Kotomin E. A. Pacherova O. Kocourek T. Dejneka A. J. Mater. Chem. C. 2021;9:1693. doi: 10.1039/D0TC05750A. DOI
Tyunina M. Pacherova O. Kocourek T. Dejneka A. Sci. Rep. 2021;11:15247. doi: 10.1038/s41598-021-93968-1. PubMed DOI PMC
Tyunina M. Levoska J. Pacherova O. Kocourek T. Dejneka A. J. Mater. Chem. C. 2022;10:6770. doi: 10.1039/D1TC04969K. DOI
Tyunina M. Nepomniashchaia N. Vetokhina V. Dejneka A. Appl. Phys. Lett. 2020;117:082901. doi: 10.1063/5.0021461. DOI
Tyunina M. Nepomniashchaia N. Vetokhina V. Dejneka A. APL Mater. 2021;9:121108. doi: 10.1063/5.0075614. DOI
Tyunina M. Yao L. D. Chvostova D. Kocourek T. Jelinek M. Dejneka A. van Dijken S. New J. Phys. 2015;17:043048. doi: 10.1088/1367-2630/17/4/043048. PubMed DOI PMC
Andersen D. Hull R. J. Mater. Res. 2017;32:3977. doi: 10.1557/jmr.2017.374. DOI
Gartnerova V. Pacherova O. Klinger M. Jelinek M. Jager A. Tyunina M. Mat. Res. Bull. 2017;89:180. doi: 10.1016/j.materresbull.2017.01.048. DOI
Cohen M. L. and Chelikowsky J. R., Electronic Structure and Optical Properties of Semiconductors, Springer, 1989
Yu P. and Cardona M., Fundamentals of Semiconductors, Springer, 1996
Elliott R. J. Phys. Rev. 1957;108:1384. doi: 10.1103/PhysRev.108.1384. DOI
Tauc J. Grigorovic R. Vancu A. Phys. Status Solidi B. 1966;15:627. doi: 10.1002/pssb.19660150224. DOI
Fox M., Optical Properties of Solids, Oxford University Press, 2001
Grundmann M., Semiconductor Physics, An Introduction Including Device and Nanophysics, Springer, 2005
Viezbicke B. D. Patel S. Davis B. E. Birnie D. P. Phys. Status Solidi B. 2015;252:1700. doi: 10.1002/pssb.201552007. DOI
Klein J. Kampermann L. Mockenhaupt B. Behrens M. Strunk J. Bacher G. Adv. Funct. Mater. 2023;33:2304523.
Kubelka P. Munk F. Z. Technol. Phys. 1931;12:593.
Kubelka P. J. Opt. Soc. Am. 1948;38:448. PubMed
Vargas W. E. Niklasson G. A. Appl. Optics. 1997;36:5580. PubMed
Alcaraz de la Osa R. Iparragirre I. Ortiz D. Saiz J. M. ChemTexts. 2019;6:2. doi: 10.1007/s40828-019-0097-0. DOI
Landi S. Segundo I. R. Freitas E. Vasilevskiy M. Carneiro J. Tavares C. J. Solid State Commun. 2022;341:114573. doi: 10.1016/j.ssc.2021.114573. DOI
Urbach F. Phys. Rev. 1953;92:1324. doi: 10.1103/PhysRev.92.1324. DOI
Martienssen H. W. J. Phys. Chem. Solids. 1957;2:257. doi: 10.1016/0022-3697(57)90070-7. DOI
Kurik M. V. Phys. Stat. Sol. (a) 1971;8:9. doi: 10.1002/pssa.2210080102. DOI
Dow J. D. Redfield D. Phys. Rev. B: Condens. Matter Mater. Phys. 1972;5:594. doi: 10.1103/PhysRevB.5.594. DOI
Soukoulis C. M. Cohen M. H. Economou E. N. Phys. Rev. Lett. 1984;53:616. doi: 10.1103/PhysRevLett.53.616. DOI
John S. Soukoulis C. Cohen M. H. Economou E. N. Phys. Rev. Lett. 1986;57:1777. doi: 10.1103/PhysRevLett.57.1777. PubMed DOI
Cody G. D. J. NonCryst. Solids. 1992;141:3. doi: 10.1016/S0022-3093(05)80513-7. DOI
van Mieghem P. Rev. Mod. Phys. 1992;64:755. doi: 10.1103/RevModPhys.64.755. DOI
Studenyak I. Kranjčec Ml. Kurik M. Int. J. Opt. Appl. 2014;4:76.
Schlom D. G. Chen L.-Q. Eom C.-B. Rabe K. M. Streiffer S. K. Triscon J.-M. Annu. Rev. Mater. Res. 2007;37:589. doi: 10.1146/annurev.matsci.37.061206.113016. DOI
Pertsev N. A. Zembilgotov A. G. Tagantsev A. K. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI
Ma W. Phys. Scr. 2007:180. doi: 10.1088/0031-8949/2007/T129/041. DOI
Yudin P. V. Tagantsev A. K. Nanotechnology. 2013;24:432001. doi: 10.1088/0957-4484/24/43/432001. PubMed DOI