Tuning optical absorption in perovskite (K,Na)NbO3 ferroelectrics

. 2024 Nov 11 ; 5 (22) : 8901-8908. [epub] 20241015

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39444432

The ability to tailor the electronic band structure and optical absorption by appropriate cationic substitution in perovskite oxide ferroelectrics is essential for many advanced electronic and optoelectronic applications of these materials. Here, we explored weak (Ba,Ni)-doping for reducing optical bandgaps in (K,Na)NbO3 ferroelectric films and ceramics. The optical absorption in the broad spectral range of (0.7-8.8) eV was investigated in polycrystalline doped, pure, and oxygen deficient films, in doped epitaxial films grown on different substrates, and in doped ceramics. By comparing optical properties of all films and ceramics, it was established that 1-2 at% of cationic substitutions or up to 10 at % of oxygen vacancies have no detectable effect on the direct (∼4.5 eV) and indirect (∼3.9 eV) gaps. Concurrently, substantial sub-gap absorption was revealed and ascribed to structural band tailing in epitaxial films and ceramics. It was suggested that owing to fundamental strain-property couplings in perovskite oxide ferroelectrics, inhomogeneities of lattice strain can lead to increased sub-gap absorption. The uncovered structurally induced sub-gap optical absorption can be relevant for other ferroelectric ceramics and thin films as well as for related perovskite oxides.

Zobrazit více v PubMed

Lines C. M. E. and Glass A. M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, 2004

Xu Y., Ferroelectric Materials and Their Applications, Elsevier, 1991

Scott J. F. Applications of Modern Ferroelectrics. Science. 2007;315:954. doi: 10.1126/science.1129564. PubMed DOI

Huang H. and Scott J. F., Ferroelectric Materials for Energy Applications, Wiley-VCH, 2019

Wei X. K. Domingo N. Sun Y. Balke N. Dunin-Borkowski R. E. Mayer J. Adv. Energy Mater. 2022;12:2201199. doi: 10.1002/aenm.202201199. DOI

Boda M. A. Withers R. L. Liu Y. Ye J. Yi Z. J. Mater. Chem. A. 2022;10:22977. doi: 10.1039/D2TA05294F. DOI

Wei H. Yang C. Ya. Wu B. Cao M. Lorenz M. Grundmann M. J. Mater. Chem. C. 2020;8:15575. doi: 10.1039/D0TC02811H. DOI

Kumar A. Kumar A. Krishnan V. ACS Catal. 2020;10:10253. doi: 10.1021/acscatal.0c02947. DOI

Zhou W. Deng H. Yu L. Yang P. Chu J. Ceram. Int. 2015;41:13389. doi: 10.1016/j.ceramint.2015.07.127. DOI

Bai Y. Tofel P. Palosaari J. Jantunen H. Juuti J. Adv. Mater. 2017;29:1700767. doi: 10.1002/adma.201700767. PubMed DOI

Xie P. Yang F. Li R. Ai C. Lin C. Lin S. Int. J. Hydrogen Energy. 2019;44:11695. doi: 10.1016/j.ijhydene.2019.03.145. DOI

Alkathy M. S. Zabotto F. L. Raju K. C. J. Eiras J. A. Mater. Chem. Phys. 2022;275:125235. doi: 10.1016/j.matchemphys.2021.125235. DOI

Hao S. Yao M. Vitali-Derrien G. Gemeiner P. Otoničar M. Ruello P. Bouyanfif H. Janolin P.-E. Dkhil B. Paillard C. J. Mater. Chem. C. 2022;10:227. doi: 10.1039/D1TC04250E. DOI

Bai Y. Kistanov A. A. Cao W. Juuti J. J. Phys. Chem. C. 2021;125:8890. doi: 10.1021/acs.jpcc.1c01845. DOI

Bai Y. Open Ceram. 2021;5:100079. doi: 10.1016/j.oceram.2021.100079. DOI

Tyunina M. Pacherova O. Nepomniashchaia N. Vetokhina V. Cichon S. Kocourek T. Dejneka A. Phys. Chem. Chem. Phys. 2020;22:24796. doi: 10.1039/D0CP03644G. PubMed DOI

Tyunina M. Rusevich L. L. Kotomin E. A. Pacherova O. Kocourek T. Dejneka A. J. Mater. Chem. C. 2021;9:1693. doi: 10.1039/D0TC05750A. DOI

Tyunina M. Pacherova O. Kocourek T. Dejneka A. Sci. Rep. 2021;11:15247. doi: 10.1038/s41598-021-93968-1. PubMed DOI PMC

Tyunina M. Levoska J. Pacherova O. Kocourek T. Dejneka A. J. Mater. Chem. C. 2022;10:6770. doi: 10.1039/D1TC04969K. DOI

Tyunina M. Nepomniashchaia N. Vetokhina V. Dejneka A. Appl. Phys. Lett. 2020;117:082901. doi: 10.1063/5.0021461. DOI

Tyunina M. Nepomniashchaia N. Vetokhina V. Dejneka A. APL Mater. 2021;9:121108. doi: 10.1063/5.0075614. DOI

Tyunina M. Yao L. D. Chvostova D. Kocourek T. Jelinek M. Dejneka A. van Dijken S. New J. Phys. 2015;17:043048. doi: 10.1088/1367-2630/17/4/043048. PubMed DOI PMC

Andersen D. Hull R. J. Mater. Res. 2017;32:3977. doi: 10.1557/jmr.2017.374. DOI

Gartnerova V. Pacherova O. Klinger M. Jelinek M. Jager A. Tyunina M. Mat. Res. Bull. 2017;89:180. doi: 10.1016/j.materresbull.2017.01.048. DOI

Cohen M. L. and Chelikowsky J. R., Electronic Structure and Optical Properties of Semiconductors, Springer, 1989

Yu P. and Cardona M., Fundamentals of Semiconductors, Springer, 1996

Elliott R. J. Phys. Rev. 1957;108:1384. doi: 10.1103/PhysRev.108.1384. DOI

Tauc J. Grigorovic R. Vancu A. Phys. Status Solidi B. 1966;15:627. doi: 10.1002/pssb.19660150224. DOI

Fox M., Optical Properties of Solids, Oxford University Press, 2001

Grundmann M., Semiconductor Physics, An Introduction Including Device and Nanophysics, Springer, 2005

Viezbicke B. D. Patel S. Davis B. E. Birnie D. P. Phys. Status Solidi B. 2015;252:1700. doi: 10.1002/pssb.201552007. DOI

Klein J. Kampermann L. Mockenhaupt B. Behrens M. Strunk J. Bacher G. Adv. Funct. Mater. 2023;33:2304523.

Kubelka P. Munk F. Z. Technol. Phys. 1931;12:593.

Kubelka P. J. Opt. Soc. Am. 1948;38:448. PubMed

Vargas W. E. Niklasson G. A. Appl. Optics. 1997;36:5580. PubMed

Alcaraz de la Osa R. Iparragirre I. Ortiz D. Saiz J. M. ChemTexts. 2019;6:2. doi: 10.1007/s40828-019-0097-0. DOI

Landi S. Segundo I. R. Freitas E. Vasilevskiy M. Carneiro J. Tavares C. J. Solid State Commun. 2022;341:114573. doi: 10.1016/j.ssc.2021.114573. DOI

Urbach F. Phys. Rev. 1953;92:1324. doi: 10.1103/PhysRev.92.1324. DOI

Martienssen H. W. J. Phys. Chem. Solids. 1957;2:257. doi: 10.1016/0022-3697(57)90070-7. DOI

Kurik M. V. Phys. Stat. Sol. (a) 1971;8:9. doi: 10.1002/pssa.2210080102. DOI

Dow J. D. Redfield D. Phys. Rev. B: Condens. Matter Mater. Phys. 1972;5:594. doi: 10.1103/PhysRevB.5.594. DOI

Soukoulis C. M. Cohen M. H. Economou E. N. Phys. Rev. Lett. 1984;53:616. doi: 10.1103/PhysRevLett.53.616. DOI

John S. Soukoulis C. Cohen M. H. Economou E. N. Phys. Rev. Lett. 1986;57:1777. doi: 10.1103/PhysRevLett.57.1777. PubMed DOI

Cody G. D. J. NonCryst. Solids. 1992;141:3. doi: 10.1016/S0022-3093(05)80513-7. DOI

van Mieghem P. Rev. Mod. Phys. 1992;64:755. doi: 10.1103/RevModPhys.64.755. DOI

Studenyak I. Kranjčec Ml. Kurik M. Int. J. Opt. Appl. 2014;4:76.

Schlom D. G. Chen L.-Q. Eom C.-B. Rabe K. M. Streiffer S. K. Triscon J.-M. Annu. Rev. Mater. Res. 2007;37:589. doi: 10.1146/annurev.matsci.37.061206.113016. DOI

Pertsev N. A. Zembilgotov A. G. Tagantsev A. K. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI

Ma W. Phys. Scr. 2007:180. doi: 10.1088/0031-8949/2007/T129/041. DOI

Yudin P. V. Tagantsev A. K. Nanotechnology. 2013;24:432001. doi: 10.1088/0957-4484/24/43/432001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...