Anisotropic chemical expansion due to oxygen vacancies in perovskite films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-09671S
Grantová Agentura České Republiky
SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760
Ministry of Education, Youth, and Sports of the Czech Republic
SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760
European Structural and Investment Funds
PubMed
34315921
PubMed Central
PMC8316387
DOI
10.1038/s41598-021-93968-1
PII: 10.1038/s41598-021-93968-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In scientifically intriguing and technologically important multifunctional ABO3 perovskite oxides, oxygen vacancies are most common defects. They cause lattice expansion and can alter the key functional properties. Here, it is demonstrated that contrary to weak isotropic expansion in bulk samples, oxygen vacancies produce strong anisotropic strain in epitaxial thin films. This anisotropic chemical strain is explained by preferential orientation of elastic dipoles of the vacancies. Elastic interaction of the dipoles with substrate-imposed misfit strain is suggested to define the dipolar orientation. Such elastic behavior of oxygen vacancies is anticipated to be general for perovskite films and have critical impacts on the film synthesis and response functions.
Zobrazit více v PubMed
Koster G, Huijben M, Rijnders G, editors. Epitaxial Growth of Complex Metal Oxides. Woodhead Publishing; 2015.
MacManus-Driscoll JL, Wells MP, Yun C, Lee J-W, Eom C-B, Schlom DG. New approaches for achieving more perfect transition metal oxide thin films. APL Mater. 2020;8:040904. doi: 10.1063/5.0003268. DOI
Pertsev NA, Zembilgotov AG, Tagantsev AK. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI
Li J, Shan Z, Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014;39:108. doi: 10.1557/mrs.2014.3. DOI
Schlom DG, et al. Elastic strain engineering of ferroic oxides. MRS Bull. 2014;39:118. doi: 10.1557/mrs.2014.1. DOI
Aschauer U, Pfenninger R, Selbach SM, Grande T, Spaldin NA. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys. Rev. B. 2013;88:054111. doi: 10.1103/PhysRevB.88.054111. DOI
Aschauer U, Spaldin NA. Interplay between strain, defect charge state, and functionality in complex oxides. Appl. Phys. Lett. 2016;109:031901. doi: 10.1063/1.4958716. DOI
Xi J, Xu H, Zhang Y, Weber WJ. Strain effects on oxygen vacancy energetics in KTaO3. Phys. Chem. Chem. Phys. 2017;19:6264. doi: 10.1039/C6CP08315C. PubMed DOI
Kotiuga M, et al. Carrier localization in perovskite nickelates from oxygen vacancies. Proc. Natl. Acad. Sci. U.S.A. 2019;116:21992. doi: 10.1073/pnas.1910490116. PubMed DOI PMC
Kim TH, et al. Strain-driven disproportionation at a correlated oxide metal-insulator transition. Phys. Rev. B. 2020;101:121105(R). doi: 10.1103/PhysRevB.101.121105. DOI
Tyunina M, et al. Oxygen vacancy dipoles in strained epitaxial BaTiO3 films. Phys. Rev. Res. 2020;2:023056. doi: 10.1103/PhysRevResearch.2.023056. DOI
Tyunina M, et al. Multiple optical impacts of anion doping in epitaxial barium titanate films. APL Mater. 2020;8:071107. doi: 10.1063/5.0007209. DOI
Tyunina M, et al. In situ anion-doped epitaxial strontium titanate films. Phys. Chem. Chem. Phys. 2020;22:24796. doi: 10.1039/D0CP03644G. PubMed DOI
Tyunina M, Rusevich LL, Kotomin EA, Pacherova O, Kocourek T, Dejneka A. Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies. J. Mater. Chem. C. 2021;9:1693. doi: 10.1039/D0TC05750A. DOI
Rusevich LL, Kotomin EA, Zvejnieks G, Popov AI. Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies. Low Temp. Phys. 2020;46:1185. doi: 10.1063/10.0002472. DOI
Freedman DA, Roundy D, Arias TA. Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B. 2009;80:064108. doi: 10.1103/PhysRevB.80.064108. DOI
Granhed EJ, Lindman A, Eklof-Osterberg C, Karlsson M, Parker SF, Wahnstrom G. Band vs. polaron: vibrational motion and chemical expansion of hydride ions as signatures for the electronic character in oxyhydride barium titanate. J. Mater. Chem. A. 2019;7:16211. doi: 10.1039/C9TA00086K. DOI
Zhukovskii YF, Kotomin EA, Piskunov S, Ellis DE. A comparative ab initio study of bulk and surface oxygen vacancies in PbTiO3, PbZrO3 and SrTiO3 perovskites. Solid State Commun. 2009;149:1359. doi: 10.1016/j.ssc.2009.05.023. DOI
Sundell PG, Björketun ME, Wahnström G. Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations. Phys. Rev. B. 2006;73:104112. doi: 10.1103/PhysRevB.73.104112. PubMed DOI
Stupakov A, Pacherova O, Kocourek T, Jelinek M, Dejneka A, Tyunina M. Negative magnetoresistance in epitaxial films of neodymium nickelate. Phys. Rev. B. 2019;99:085111. doi: 10.1103/PhysRevB.99.085111. DOI
Bak J, Bae HB, Kim J, Oh J, Chung S-Y. Formation of two-dimensional homologous faults and oxygen electrocatalytic activities in a perovskite nickelate. Nano Lett. 2017;17:3126. doi: 10.1021/acs.nanolett.7b00561. PubMed DOI
Guo Q, Farokhipoor S, Magén C, Rivadulla F, Noheda B. Tunable resistivity exponents in the metallic phase of epitaxial nickelates. Nat. Commun. 2020;11:2949. doi: 10.1038/s41467-020-16740-5. PubMed DOI PMC
Breckenfeld E, Chen Z, Damodaran AR, Martin LW. Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films. ACS Appl. Mater. Interfaces. 2014;6:22436. doi: 10.1021/am506436s. PubMed DOI
Li Z, Guo W, Zhang TT, Song JH, Gao TY, Gu ZB, Nie YF. Epitaxial growth and electronic structure of Ruddlesden-Popper nickelates (Lan+1NinO3n+1, n = 1–5) APL Mater. 2020;8:091112. doi: 10.1063/5.0018934. DOI
Tyunina M, Savinov M. Charge transport in epitaxial barium titanate films. Phys. Rev. B. 2020;101:094106. doi: 10.1103/PhysRevB.101.094106. DOI
Tuning optical absorption in perovskite (K,Na)NbO3 ferroelectrics