Small-polaron transport in perovskite nickelates

. 2023 Aug 01 ; 13 (1) : 12493. [epub] 20230801

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37528184

Grantová podpora
22-10832S Czech Science Foundation

Odkazy

PubMed 37528184
PubMed Central PMC10394062
DOI 10.1038/s41598-023-39821-z
PII: 10.1038/s41598-023-39821-z
Knihovny.cz E-zdroje

Knowledge of the explicit mechanisms of charge transport is preeminent for a fundamental understanding of the metal-to-insulator transition in ABO3-type perovskite rare-earth nickelates and for potential applications of these technologically promising materials. Here we suggest that owing to intrinsic Jahn-Teller-driven carrier localization, small-polaron transport is innate in nickelates. We demonstrate experimental evidence for such transport by investigating AC conductivity over a broad range of temperatures and frequencies in epitaxial SmNiO3 films. We reveal the hopping mechanism of conductivity, Holstein-type activation energy for hopping, nonclassical relaxation behavior, and nonclassical consistency between activation and relaxation. By analyzing these observations, we validate small-polaron transport. We anticipate that our findings can lead to precise tailoring of the DC and AC conductivity in nickelates as requested for fruitful employment of these materials. We also believe that further investigations of self-trapped small polarons are essential for a comprehensive understanding of nickelates.

Zobrazit více v PubMed

Torrance JB, Lacorre P, Nazzal AI, Ansaldo EJ, Niedermayer C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B. 1992;45:8209. doi: 10.1103/PhysRevB.45.8209. PubMed DOI

García-Muñoz JL, Rodríguez-Carvajal J, Lacorre P, Torrance JB. Neutron-diffraction study of RNiO3 (R=La, Pr, Nd, Sm): Electronically induced structural changes across the metal-insulator transition. Phys. Rev. B. 1992;46:4414. doi: 10.1103/PhysRevB.46.4414. PubMed DOI

Medarde ML. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth) J. Phys. Condens. Matter. 1997;9:1679. doi: 10.1088/0953-8984/9/8/003. DOI

Klein YM, Kozłowski M, Linden A, Lacorre P, Medarde M, Gawryluk DJ. RENiO3 single crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) grown from molten salts under 2000 bar of oxygen gas pressure. Cryst. Growth Des. 2021;21:4230. doi: 10.1021/acs.cgd.1c00474. DOI

Middey S, Chakhalian J, Mahadevan P, Freeland JW, Millis AJ, Sarma DD. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 2016;46:305. doi: 10.1146/annurev-matsci-070115-032057. DOI

Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone JM, Kreisel J. Rare-earth nickelates RNiO3: Thin films and heterostructures. Rep. Prog. Phys. 2018;81:046501. doi: 10.1088/1361-6633/aaa37a. PubMed DOI

Jaramillo R, Ha SD, Silevitch DM, Ramanathan S. Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates. Nat. Phys. 2014;10:304. doi: 10.1038/nphys2907. DOI

Mikheev E, Hauser AJ, Himmetoglu B, Moreno NE, Janotti A, Van de Walle CG, Stemmer S. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films. Sci. Adv. 2015;1:e1500797. doi: 10.1126/sciadv.1500797. PubMed DOI PMC

Ojha SK, Ray S, Das T, Middey S, Sarkar S, Mahadevan P, Wang Z, Zhu Y, Liu X, Kareev M, Chakhalian J. Anomalous electron transport in epitaxial NdNiO3 films. Phys. Rev. B. 2019;99:235153. doi: 10.1103/PhysRevB.99.235153. DOI

Guo Q, Farokhipoor S, Magén C, Rivadulla F, Noheda B. Tunable resistivity exponents in the metallic phase of epitaxial nickelates. Nat. Commun. 2020;11:2949. doi: 10.1038/s41467-020-16740-5. PubMed DOI PMC

Preziosi D, Lopez-Mir L, Li X, Cornelissen T, Lee JH, Trier F, Bouzehouane K, Valencia S, Gloter A, Barthélémy A, Bibes M. Direct mapping of phase separation across the metal-insulator transition of NdNiO3. Nano Lett. 2018;18:2226. doi: 10.1021/acs.nanolett.7b04728. PubMed DOI

Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials. Springer International Publishing; 2017.

Shlimak I. Is Hopping a Science? Selected Topics of Hopping Conductivity. World Scientific Publishing; 2015.

Baranovski S. Charge Transport in Disordered Solids with Applications in Electronics. Wiley; 2006.

Kotomin EA, Eglitis RI, Borstel G. Quantum chemical modelling of electron polarons and excitons in ABO3 perovskites. J. Phys. Condens. Matter. 2000;12:L557. doi: 10.1088/0953-8984/12/35/101. DOI

Eglitis RI, Kotomin EA, Borstel G. Quantum chemical modelling of electron polarons and charge-transfer vibronic excitons in BaTiO3 perovskite crystals. J. Phys. Condens. Matter. 2002;14:3735. doi: 10.1088/0953-8984/14/14/306. DOI

Janotti A, Varley JB, Choi M, Van de Walle CG. Vacancies and small polarons in SrTiO3. Phys. Rev. B. 2014;90:085202. doi: 10.1103/PhysRevB.90.085202. DOI

Bjaalie L, Ouellette DG, Moetakef P, Cain TA, Janotti A, Himmetoglu B, Allen SJ, Stemmer S, Van de Walle CG. Small hole polarons in rare-earth titanates. Appl. Phys. Lett. 2015;106:232103. doi: 10.1063/1.4922316. DOI

Tsunoda N, Kumagai Y, Oba F. Stabilization of small polarons in BaTiO3 by local distortions. Phys. Rev. Mater. 2019;3:114602. doi: 10.1103/PhysRevMaterials.3.114602. DOI

Xu T, Shimada T, Araki Y, Mori M, Fujimoto G, Wang J, Zhang T-Y, Kitamura T. Electron engineering of metallic multiferroic polarons in epitaxial BaTiO3. NPJ Comput. Mater. 2019;5:23. doi: 10.1038/s41524-019-0163-6. DOI

Yue J, Quackenbush NF, Laraib I, Carfagno H, Hameed S, Prakash A, Thoutam LR, Ablett JM, Lee T-L, Greven M, Doty MF, Janotti A, Jalan B. Electronic structure and small-hole polarons in YTiO3. Phys. Rev. Mater. 2020;4:112001(R). doi: 10.1103/PhysRevMaterials.4.112001. DOI

Franchini C, Reticcioli M, Setvin M, Diebold U. Polarons in materials. Nat. Rev. Mater. 2021;6:560–586. doi: 10.1038/s41578-021-00289-w. DOI

Massa NE, Alonso JA, Martínez-Lope MJ, Rasines I. Reflectivity, transmission, and photoinduced infrared spectra of NdNiO3. Phys. Rev. B. 1997;56:986. doi: 10.1103/PhysRevB.56.986. DOI

Medarde M, Lacorre P, Conder K, Fauth F, Furrer A. Giant 16O–18O isotope effect on the metal-insulator transition of RNiO3 perovskites (R = Rare Earth) Phys. Rev. Lett. 1998;80:2397. doi: 10.1103/PhysRevLett.80.2397. DOI

Mroginski MA, Massa NE, Salva H, Alonso JA, Martinez-Lope MJ. Metal-insulator phase transitions of SmNiO3 and PrNiO3: Electrons in a polaronic medium. Phys. Rev. B. 1999;60:5304. doi: 10.1103/PhysRevB.60.5304. DOI

Shamblin J, Heres M, Zhou H, Sangoro J, Lang M, Neuefeind J, Alonso JA, Johnston S. Experimental evidence for bipolaron condensation as a mechanism for the metal-insulator transition in rare-earth nickelates. Nat. Commun. 2018;9:86. doi: 10.1038/s41467-017-02561-6. PubMed DOI PMC

Devreese JT. Polarons, in Encyclopedia of Applied Physics. Wiley-VCH Publishers; 1996. pp. 383–409.

Alexandrov AS. Polarons in Advanced Materials. Springer; 2007.

Alexandrov AS, Devreese JT. Advances in Polaron Physics. Springer-Verlag; 2007.

Emin D. Polarons. Cambridge University Press; 2012.

Tyunina M, Savinov M, Dejneka A. Small-polaron conductivity in perovskite ferroelectric BaTiO3. Appl. Phys. Lett. 2022;121:202901. doi: 10.1063/5.0129831. DOI

Xiang P-H, Asanuma S, Yamada H, Inoue IH, Akoh H, Sawa A. Room temperature Mott metal-insulator transition and its systematic control in Sm1−xCaxNiO3 thin films. Appl. Phys. Lett. 2010;97:032114. doi: 10.1063/1.3467199. DOI

Ha SD, Aydogdu GH, Ramanathan S. Examination of insulator regime conduction mechanisms in epitaxial and polycrystalline SmNiO3 thin films. J. Appl. Phys. 2011;110:094102. doi: 10.1063/1.3658263. DOI

Ha SD, Otaki M, Jaramillo R, Podpirka A, Ramanathan S. Stable metal–insulator transition in epitaxial SmNiO3 thin films. J. Solid State Chem. 2012;190:233–237. doi: 10.1016/j.jssc.2012.02.047. DOI

Bruno FY, Rushchanskii KZ, Valencia S, Dumont Y, Carretero C, Jacquet E, Abrudan R, Blugel S, Lezaic M, Bibes M, Barthelemy A. Rationalizing strain engineering effects in rare-earth nickelates. Phys. Rev. B. 2013;88:195108. doi: 10.1103/PhysRevB.88.195108. DOI

Catalano S, Gibert M, Bisogni V, Peil OE, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Georges A, Sawatzky GA, Schmitt T, Triscone J-M. Electronic transitions in strained SmNiO3 thin films. APL Mater. 2014;2:116110. doi: 10.1063/1.4902138. DOI

Shukla N, Joshi T, Dasgupta S, Borisov P, Lederman D, Datta S. Electrically induced insulator to metal transition in epitaxial SmNiO3 thin films. Appl. Phys. Lett. 2014;105:012108. doi: 10.1063/1.4890329. DOI

Shi J, Zhou Y, Ramanathan S. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nat. Commun. 2014;5:4860. doi: 10.1038/ncomms5860. PubMed DOI

Li Z, Zhou Y, Qi H, Pan Q, Zhang Z, Shi NN, Lu M, Stein A, Li CY, Ramanathan S, Yu N. Correlated Perovskites as a new platform for super-broadband-tunable photonics. Adv. Mater. 2016;28:9117. doi: 10.1002/adma.201601204. PubMed DOI

Zhou Y, Guan X, Zhou H, Ramadoss K, Adam S, Liu H, Lee S, Shi J, Tsuchiya M, Fong DD, Ramanathan S. Strongly correlated perovskite fuel cells. Nature. 2016;534:231. doi: 10.1038/nature17653. PubMed DOI

Chen BJ, Sun Y, Yang N, Zhong N, Zhang YY, Bai W, Sun L, Tang XD, Yang PX, Xiang PH, Duan CG. Electronic phase diagram of oxygen deficient SmNiO3−δ epitaxial thin films. J. Phys. D Appl. Phys. 2017;50:235302. doi: 10.1088/1361-6463/aa6de7. DOI

Torriss B, Margot J, Chaker M. Metal-insulator transition of strained SmNiO3 thin films: Structural, electrical and optical properties. Sci. Rep. 2017;7:40915. doi: 10.1038/srep40915. PubMed DOI PMC

Kotiuga M, Zhang Z, Li J, Rodolakis F, Zhou H, Sutarto R, He F, Wang Q, Sun Y, Wang Y, Aghamiri NA, Hancock SB, Rokhinson LP, Landau DP, Abate Y, Freeland JW, Comin R, Ramanathan S, Rabe KM. Carrier localization in perovskite nickelates from oxygen vacancies. Proc. Natl. Acad. Sci. U.S.A. 2019;116:21992. doi: 10.1073/pnas.1910490116. PubMed DOI PMC

Chen J, Mao W, Ge B, Wang J, Ke X, Wang V, Wang Y, Döbeli M, Geng W, Matsuzaki H, Shi J, Jiang Y. Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3. Nat. Commun. 2019;10:694. doi: 10.1038/s41467-019-08613-3. PubMed DOI PMC

del Valle J, Rocco R, Domínguez C, Fowlie J, Gariglio S, Rozenberg MJ, Triscone J-M. Dynamics of the electrically induced insulator-to-metal transition in rare-earth nickelates. Phys. Rev. B. 2021;104:165141. doi: 10.1103/PhysRevB.104.165141. DOI

Stupakov A, Pacherova O, Kocourek T, Jelinek M, Dejneka A, Tyunina M. Negative magnetoresistance in epitaxial films of neodymium nickelate. Phys. Rev. B. 2019;99:085111. doi: 10.1103/PhysRevB.99.085111. DOI

Tyunina M, Pacherova O, Kocourek T, Dejneka A. Anisotropic chemical expansion due to oxygen vacancies in perovskite films. Sci. Rep. 2021;11:15247. doi: 10.1038/s41598-021-93968-1. PubMed DOI PMC

May SJ, Kim J-W, Rondinelli JM, Karapetrova E, Spaldin NA, Bhattacharya A, Ryan PJ. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B. 2010;82:014110. doi: 10.1103/PhysRevB.82.014110. DOI

Mazierska JE, Jacob MV, Ledenyov DO, Krupka J. Loss tangent measurements of dielectric substrates from 15 K to 300 K with two resonators: Investigation into accuracy issues. Asia-Pac. Microw. Conf. Proc. APMC. 2005;4:4.

Sun L, Chen Y-F, He L, Ge C-Z, Ding D-S, Yu T, Zhang M-S, Ming N-B. Phonon-mode hardening in epitaxial PbTiO3 ferroelectric thin films. Phys. Rev. B. 1997;55:12218. doi: 10.1103/PhysRevB.55.12218. DOI

Wesselinowa JM, Kovachev S. Hardening and softening of soft phonon modes in ferroelectric thin films. Phys. Rev. B. 2007;75:045411. doi: 10.1103/PhysRevB.75.045411. DOI

Katayama I, Shimosato H, Rana DS, Kawayama I, Tonouchi M, Ashida M. Hardening of the ferroelectric soft mode in SrTiO3 thin films. Appl. Phys. Lett. 2008;93:132903. doi: 10.1063/1.2991442. PubMed DOI

Marsik P, Sen K, Khmaladze J, Yazdi-Rizi M, Mallett BPP, Bernhard C. Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO3 films. Appl. Phys. Lett. 2016;108:052901. doi: 10.1063/1.4940976. DOI

Moreau M, Marthinsen A, Selbach SM, Tybell T. Strain-phonon coupling in (111)-oriented perovskite oxides. Phys. Rev. B. 2017;96:094109. doi: 10.1103/PhysRevB.96.094109. DOI

Schober A, Fowlie J, Guennou M, Weber MC, Zhao H, Íñiguez J, Gibert M, Triscone J-M, Kreisel J. Vibrational properties of LaNiO3 films in the ultrathin regime. APL Mater. 2020;8:061102. doi: 10.1063/5.0010233. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...