Small-polaron transport in perovskite nickelates
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-10832S
Czech Science Foundation
PubMed
37528184
PubMed Central
PMC10394062
DOI
10.1038/s41598-023-39821-z
PII: 10.1038/s41598-023-39821-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Knowledge of the explicit mechanisms of charge transport is preeminent for a fundamental understanding of the metal-to-insulator transition in ABO3-type perovskite rare-earth nickelates and for potential applications of these technologically promising materials. Here we suggest that owing to intrinsic Jahn-Teller-driven carrier localization, small-polaron transport is innate in nickelates. We demonstrate experimental evidence for such transport by investigating AC conductivity over a broad range of temperatures and frequencies in epitaxial SmNiO3 films. We reveal the hopping mechanism of conductivity, Holstein-type activation energy for hopping, nonclassical relaxation behavior, and nonclassical consistency between activation and relaxation. By analyzing these observations, we validate small-polaron transport. We anticipate that our findings can lead to precise tailoring of the DC and AC conductivity in nickelates as requested for fruitful employment of these materials. We also believe that further investigations of self-trapped small polarons are essential for a comprehensive understanding of nickelates.
Zobrazit více v PubMed
Torrance JB, Lacorre P, Nazzal AI, Ansaldo EJ, Niedermayer C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B. 1992;45:8209. doi: 10.1103/PhysRevB.45.8209. PubMed DOI
García-Muñoz JL, Rodríguez-Carvajal J, Lacorre P, Torrance JB. Neutron-diffraction study of RNiO3 (R=La, Pr, Nd, Sm): Electronically induced structural changes across the metal-insulator transition. Phys. Rev. B. 1992;46:4414. doi: 10.1103/PhysRevB.46.4414. PubMed DOI
Medarde ML. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth) J. Phys. Condens. Matter. 1997;9:1679. doi: 10.1088/0953-8984/9/8/003. DOI
Klein YM, Kozłowski M, Linden A, Lacorre P, Medarde M, Gawryluk DJ. RENiO3 single crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) grown from molten salts under 2000 bar of oxygen gas pressure. Cryst. Growth Des. 2021;21:4230. doi: 10.1021/acs.cgd.1c00474. DOI
Middey S, Chakhalian J, Mahadevan P, Freeland JW, Millis AJ, Sarma DD. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 2016;46:305. doi: 10.1146/annurev-matsci-070115-032057. DOI
Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone JM, Kreisel J. Rare-earth nickelates RNiO3: Thin films and heterostructures. Rep. Prog. Phys. 2018;81:046501. doi: 10.1088/1361-6633/aaa37a. PubMed DOI
Jaramillo R, Ha SD, Silevitch DM, Ramanathan S. Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates. Nat. Phys. 2014;10:304. doi: 10.1038/nphys2907. DOI
Mikheev E, Hauser AJ, Himmetoglu B, Moreno NE, Janotti A, Van de Walle CG, Stemmer S. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films. Sci. Adv. 2015;1:e1500797. doi: 10.1126/sciadv.1500797. PubMed DOI PMC
Ojha SK, Ray S, Das T, Middey S, Sarkar S, Mahadevan P, Wang Z, Zhu Y, Liu X, Kareev M, Chakhalian J. Anomalous electron transport in epitaxial NdNiO3 films. Phys. Rev. B. 2019;99:235153. doi: 10.1103/PhysRevB.99.235153. DOI
Guo Q, Farokhipoor S, Magén C, Rivadulla F, Noheda B. Tunable resistivity exponents in the metallic phase of epitaxial nickelates. Nat. Commun. 2020;11:2949. doi: 10.1038/s41467-020-16740-5. PubMed DOI PMC
Preziosi D, Lopez-Mir L, Li X, Cornelissen T, Lee JH, Trier F, Bouzehouane K, Valencia S, Gloter A, Barthélémy A, Bibes M. Direct mapping of phase separation across the metal-insulator transition of NdNiO3. Nano Lett. 2018;18:2226. doi: 10.1021/acs.nanolett.7b04728. PubMed DOI
Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials. Springer International Publishing; 2017.
Shlimak I. Is Hopping a Science? Selected Topics of Hopping Conductivity. World Scientific Publishing; 2015.
Baranovski S. Charge Transport in Disordered Solids with Applications in Electronics. Wiley; 2006.
Kotomin EA, Eglitis RI, Borstel G. Quantum chemical modelling of electron polarons and excitons in ABO3 perovskites. J. Phys. Condens. Matter. 2000;12:L557. doi: 10.1088/0953-8984/12/35/101. DOI
Eglitis RI, Kotomin EA, Borstel G. Quantum chemical modelling of electron polarons and charge-transfer vibronic excitons in BaTiO3 perovskite crystals. J. Phys. Condens. Matter. 2002;14:3735. doi: 10.1088/0953-8984/14/14/306. DOI
Janotti A, Varley JB, Choi M, Van de Walle CG. Vacancies and small polarons in SrTiO3. Phys. Rev. B. 2014;90:085202. doi: 10.1103/PhysRevB.90.085202. DOI
Bjaalie L, Ouellette DG, Moetakef P, Cain TA, Janotti A, Himmetoglu B, Allen SJ, Stemmer S, Van de Walle CG. Small hole polarons in rare-earth titanates. Appl. Phys. Lett. 2015;106:232103. doi: 10.1063/1.4922316. DOI
Tsunoda N, Kumagai Y, Oba F. Stabilization of small polarons in BaTiO3 by local distortions. Phys. Rev. Mater. 2019;3:114602. doi: 10.1103/PhysRevMaterials.3.114602. DOI
Xu T, Shimada T, Araki Y, Mori M, Fujimoto G, Wang J, Zhang T-Y, Kitamura T. Electron engineering of metallic multiferroic polarons in epitaxial BaTiO3. NPJ Comput. Mater. 2019;5:23. doi: 10.1038/s41524-019-0163-6. DOI
Yue J, Quackenbush NF, Laraib I, Carfagno H, Hameed S, Prakash A, Thoutam LR, Ablett JM, Lee T-L, Greven M, Doty MF, Janotti A, Jalan B. Electronic structure and small-hole polarons in YTiO3. Phys. Rev. Mater. 2020;4:112001(R). doi: 10.1103/PhysRevMaterials.4.112001. DOI
Franchini C, Reticcioli M, Setvin M, Diebold U. Polarons in materials. Nat. Rev. Mater. 2021;6:560–586. doi: 10.1038/s41578-021-00289-w. DOI
Massa NE, Alonso JA, Martínez-Lope MJ, Rasines I. Reflectivity, transmission, and photoinduced infrared spectra of NdNiO3. Phys. Rev. B. 1997;56:986. doi: 10.1103/PhysRevB.56.986. DOI
Medarde M, Lacorre P, Conder K, Fauth F, Furrer A. Giant 16O–18O isotope effect on the metal-insulator transition of RNiO3 perovskites (R = Rare Earth) Phys. Rev. Lett. 1998;80:2397. doi: 10.1103/PhysRevLett.80.2397. DOI
Mroginski MA, Massa NE, Salva H, Alonso JA, Martinez-Lope MJ. Metal-insulator phase transitions of SmNiO3 and PrNiO3: Electrons in a polaronic medium. Phys. Rev. B. 1999;60:5304. doi: 10.1103/PhysRevB.60.5304. DOI
Shamblin J, Heres M, Zhou H, Sangoro J, Lang M, Neuefeind J, Alonso JA, Johnston S. Experimental evidence for bipolaron condensation as a mechanism for the metal-insulator transition in rare-earth nickelates. Nat. Commun. 2018;9:86. doi: 10.1038/s41467-017-02561-6. PubMed DOI PMC
Devreese JT. Polarons, in Encyclopedia of Applied Physics. Wiley-VCH Publishers; 1996. pp. 383–409.
Alexandrov AS. Polarons in Advanced Materials. Springer; 2007.
Alexandrov AS, Devreese JT. Advances in Polaron Physics. Springer-Verlag; 2007.
Emin D. Polarons. Cambridge University Press; 2012.
Tyunina M, Savinov M, Dejneka A. Small-polaron conductivity in perovskite ferroelectric BaTiO3. Appl. Phys. Lett. 2022;121:202901. doi: 10.1063/5.0129831. DOI
Xiang P-H, Asanuma S, Yamada H, Inoue IH, Akoh H, Sawa A. Room temperature Mott metal-insulator transition and its systematic control in Sm1−xCaxNiO3 thin films. Appl. Phys. Lett. 2010;97:032114. doi: 10.1063/1.3467199. DOI
Ha SD, Aydogdu GH, Ramanathan S. Examination of insulator regime conduction mechanisms in epitaxial and polycrystalline SmNiO3 thin films. J. Appl. Phys. 2011;110:094102. doi: 10.1063/1.3658263. DOI
Ha SD, Otaki M, Jaramillo R, Podpirka A, Ramanathan S. Stable metal–insulator transition in epitaxial SmNiO3 thin films. J. Solid State Chem. 2012;190:233–237. doi: 10.1016/j.jssc.2012.02.047. DOI
Bruno FY, Rushchanskii KZ, Valencia S, Dumont Y, Carretero C, Jacquet E, Abrudan R, Blugel S, Lezaic M, Bibes M, Barthelemy A. Rationalizing strain engineering effects in rare-earth nickelates. Phys. Rev. B. 2013;88:195108. doi: 10.1103/PhysRevB.88.195108. DOI
Catalano S, Gibert M, Bisogni V, Peil OE, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Georges A, Sawatzky GA, Schmitt T, Triscone J-M. Electronic transitions in strained SmNiO3 thin films. APL Mater. 2014;2:116110. doi: 10.1063/1.4902138. DOI
Shukla N, Joshi T, Dasgupta S, Borisov P, Lederman D, Datta S. Electrically induced insulator to metal transition in epitaxial SmNiO3 thin films. Appl. Phys. Lett. 2014;105:012108. doi: 10.1063/1.4890329. DOI
Shi J, Zhou Y, Ramanathan S. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nat. Commun. 2014;5:4860. doi: 10.1038/ncomms5860. PubMed DOI
Li Z, Zhou Y, Qi H, Pan Q, Zhang Z, Shi NN, Lu M, Stein A, Li CY, Ramanathan S, Yu N. Correlated Perovskites as a new platform for super-broadband-tunable photonics. Adv. Mater. 2016;28:9117. doi: 10.1002/adma.201601204. PubMed DOI
Zhou Y, Guan X, Zhou H, Ramadoss K, Adam S, Liu H, Lee S, Shi J, Tsuchiya M, Fong DD, Ramanathan S. Strongly correlated perovskite fuel cells. Nature. 2016;534:231. doi: 10.1038/nature17653. PubMed DOI
Chen BJ, Sun Y, Yang N, Zhong N, Zhang YY, Bai W, Sun L, Tang XD, Yang PX, Xiang PH, Duan CG. Electronic phase diagram of oxygen deficient SmNiO3−δ epitaxial thin films. J. Phys. D Appl. Phys. 2017;50:235302. doi: 10.1088/1361-6463/aa6de7. DOI
Torriss B, Margot J, Chaker M. Metal-insulator transition of strained SmNiO3 thin films: Structural, electrical and optical properties. Sci. Rep. 2017;7:40915. doi: 10.1038/srep40915. PubMed DOI PMC
Kotiuga M, Zhang Z, Li J, Rodolakis F, Zhou H, Sutarto R, He F, Wang Q, Sun Y, Wang Y, Aghamiri NA, Hancock SB, Rokhinson LP, Landau DP, Abate Y, Freeland JW, Comin R, Ramanathan S, Rabe KM. Carrier localization in perovskite nickelates from oxygen vacancies. Proc. Natl. Acad. Sci. U.S.A. 2019;116:21992. doi: 10.1073/pnas.1910490116. PubMed DOI PMC
Chen J, Mao W, Ge B, Wang J, Ke X, Wang V, Wang Y, Döbeli M, Geng W, Matsuzaki H, Shi J, Jiang Y. Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3. Nat. Commun. 2019;10:694. doi: 10.1038/s41467-019-08613-3. PubMed DOI PMC
del Valle J, Rocco R, Domínguez C, Fowlie J, Gariglio S, Rozenberg MJ, Triscone J-M. Dynamics of the electrically induced insulator-to-metal transition in rare-earth nickelates. Phys. Rev. B. 2021;104:165141. doi: 10.1103/PhysRevB.104.165141. DOI
Stupakov A, Pacherova O, Kocourek T, Jelinek M, Dejneka A, Tyunina M. Negative magnetoresistance in epitaxial films of neodymium nickelate. Phys. Rev. B. 2019;99:085111. doi: 10.1103/PhysRevB.99.085111. DOI
Tyunina M, Pacherova O, Kocourek T, Dejneka A. Anisotropic chemical expansion due to oxygen vacancies in perovskite films. Sci. Rep. 2021;11:15247. doi: 10.1038/s41598-021-93968-1. PubMed DOI PMC
May SJ, Kim J-W, Rondinelli JM, Karapetrova E, Spaldin NA, Bhattacharya A, Ryan PJ. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B. 2010;82:014110. doi: 10.1103/PhysRevB.82.014110. DOI
Mazierska JE, Jacob MV, Ledenyov DO, Krupka J. Loss tangent measurements of dielectric substrates from 15 K to 300 K with two resonators: Investigation into accuracy issues. Asia-Pac. Microw. Conf. Proc. APMC. 2005;4:4.
Sun L, Chen Y-F, He L, Ge C-Z, Ding D-S, Yu T, Zhang M-S, Ming N-B. Phonon-mode hardening in epitaxial PbTiO3 ferroelectric thin films. Phys. Rev. B. 1997;55:12218. doi: 10.1103/PhysRevB.55.12218. DOI
Wesselinowa JM, Kovachev S. Hardening and softening of soft phonon modes in ferroelectric thin films. Phys. Rev. B. 2007;75:045411. doi: 10.1103/PhysRevB.75.045411. DOI
Katayama I, Shimosato H, Rana DS, Kawayama I, Tonouchi M, Ashida M. Hardening of the ferroelectric soft mode in SrTiO3 thin films. Appl. Phys. Lett. 2008;93:132903. doi: 10.1063/1.2991442. PubMed DOI
Marsik P, Sen K, Khmaladze J, Yazdi-Rizi M, Mallett BPP, Bernhard C. Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO3 films. Appl. Phys. Lett. 2016;108:052901. doi: 10.1063/1.4940976. DOI
Moreau M, Marthinsen A, Selbach SM, Tybell T. Strain-phonon coupling in (111)-oriented perovskite oxides. Phys. Rev. B. 2017;96:094109. doi: 10.1103/PhysRevB.96.094109. DOI
Schober A, Fowlie J, Guennou M, Weber MC, Zhao H, Íñiguez J, Gibert M, Triscone J-M, Kreisel J. Vibrational properties of LaNiO3 films in the ultrathin regime. APL Mater. 2020;8:061102. doi: 10.1063/5.0010233. DOI