State-of-the-Art Trends in Data Compression: COMPROMISE Case Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
J2-4458 and P2-0041
Slovene Research and Innovation Agency
23-04622L
Czech Science Foundation
PubMed
39766661
PubMed Central
PMC11726981
DOI
10.3390/e26121032
PII: e26121032
Knihovny.cz E-zdroje
- Klíčová slova
- data compression, data restoration, feature, residual, universal algorithm,
- Publikační typ
- časopisecké články MeSH
After a boom that coincided with the advent of the internet, digital cameras, digital video and audio storage and playback devices, the research on data compression has rested on its laurels for a quarter of a century. Domain-dependent lossy algorithms of the time, such as JPEG, AVC, MP3 and others, achieved remarkable compression ratios and encoding and decoding speeds with acceptable data quality, which has kept them in common use to this day. However, recent computing paradigms such as cloud computing, edge computing, the Internet of Things (IoT), and digital preservation have gradually posed new challenges, and, as a consequence, development trends in data compression are focusing on concepts that were not previously in the spotlight. In this article, we try to critically evaluate the most prominent of these trends and to explore their parallels, complementarities, and differences. Digital data restoration mimics the human ability to omit memorising information that is satisfactorily retrievable from the context. Feature-based data compression introduces a two-level data representation with higher-level semantic features and with residuals that correct the feature-restored (predicted) data. The integration of the advantages of individual domain-specific data compression methods into a general approach is also challenging. To the best of our knowledge, a method that addresses all these trends does not exist yet. Our methodology, COMPROMISE, has been developed exactly to make as many solutions to these challenges as possible inter-operable. It incorporates features and digital restoration. Furthermore, it is largely domain-independent (general), asymmetric, and universal. The latter refers to the ability to compress data in a common framework in a lossy, lossless, and near-lossless mode. COMPROMISE may also be considered an umbrella that links many existing domain-dependent and independent methods, supports hybrid lossless-lossy techniques, and encourages the development of new data compression algorithms.
Zobrazit více v PubMed
Salomon D., Motta G. Handbook of Data Compression. Springer Science & Business Media; London, UK: 2010.
Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Huffman D.A. A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng. 1952;40:1098–1101. doi: 10.1109/JRPROC.1952.273898. DOI
Vitter J.S. Design and analysis of dynamic Huffman codes. J. ACM. 1987;34:825–845. doi: 10.1145/31846.42227. DOI
Langdon G.G. An introduction to arithmetic coding. IBM J. Res. Dev. 1984;28:135–149. doi: 10.1147/rd.282.0135. DOI
Ziv J., Lempel A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory. 1977;23:337–343. doi: 10.1109/TIT.1977.1055714. DOI
Welch T.A. A technique for high-performance data compression. Computer. 1984;17:8–19. doi: 10.1109/MC.1984.1659158. DOI
Moffat A., Stuiver L. Binary interpolative coding for effective index compression. Inf. Retr. 2000;3:25–47. doi: 10.1023/A:1013002601898. DOI
Žalik B., Mongus D., Lukač N., Žalik K.R. Efficient chain code compression with interpolative coding. Inf. Sci. 2018;439:39–49. doi: 10.1016/j.ins.2018.01.045. DOI
Burrows M., Wheeler D.J. A Block-Sorting Lossless Data Compression Algorithm. Systems Research Center, Digital Equipment Corporation and Digital Systems Research Center; Palo Alto, CA, USA: 1994. Technical Report.
Žalik B., Mongus D., Lukač N., Žalik K.R. Can burrows-Wheeler transform be replaced in chain code compression? Inf. Sci. 2020;525:109–118. doi: 10.1016/j.ins.2020.03.073. DOI
Adjeroh D., Bell T., Mukherjee A. The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching. Springer; New York, NY, USA: 2008.
Žalik B., Strnad D., Podgorelec D., Kolingerová I., Lukač L., Lukač N., Kolmanič S., Žalik K.R., Kohek Š. A New Transformation Technique for Reducing Information Entropy: A Case Study on Greyscale Raster Images. Entropy. 2023;25:1591. doi: 10.3390/e25121591. PubMed DOI PMC
Roelofs G. PNG: The Definitive Guide. O’Reilly & Associates, Inc.; Sebastopol, CA, USA: 1999.
Weinberger M.J., Seroussi G., Sapiro G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000;9:1309–1324. doi: 10.1109/83.855427. PubMed DOI
Liebchen T., Reznik Y.A. MPEG-4 ALS: An emerging standard for lossless audio coding; Proceedings of the DCC 2004, Data Compression Conference; Snowbird, UT, USA. 23–25 March 2004; pp. 439–448.
Monkey’s Audio—A Fast and Powerful Lossless Audio Compressor. [(accessed on 8 September 2024)]. Available online: https://www.monkeysaudio.com/
Golomb S. Run-length encodings (corresp.) IEEE Trans. Inf. Theory. 1966;12:399–401. doi: 10.1109/TIT.1966.1053907. DOI
Rice R.F. Some Practical Universal Noiseless Coding Techniques. Acronym NASA; Pasadena, CA, USA: 1979. Technical Report.
Deutsch P. DEFLATE Compressed Data Format Specification Version 1.3. RFC Editor; Marina del Rey, CA, USA: 1996. Technical Report.
Pan D.Y. Digital audio compression. Digit. Tech. J. 1993;5:28–40.
Furht B. A survey of multimedia compression techniques and standards. Part I: JPEG standard. Real-Time Imaging. 1995;1:49–67. doi: 10.1006/rtim.1995.1005. DOI
Wahid K. Discrete Wavelet Transforms-Algorithms and Applications. IntechOpen Limited; London, UK: 2011. Low complexity implementation of daubechies wavelets for medical imaging applications.
Taubman D.S., Marcellin M.W., Rabbani M. JPEG2000: Image compression fundamentals, standards and practice. J. Electron. Imaging. 2002;11:286–287. doi: 10.1117/1.1469618. DOI
The European Data Strategy. [(accessed on 9 September 2024)]. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy.
Green Computing: Latest Practices and Technologies for Ict Sustainability. [(accessed on 9 September 2024)]. Available online: https://ictfootprint.eu/en/green-computing-latest-practices-and-technologies-ict-sustainability.
Kohout J. Advances in Image and Video Technology, Proceedings of the Second Pacific Rim Symposium, PSIVT 2007, Santiago, Chile, 17–19 December 2007. Springer; Berlin/Heidelberg, Germany: 2007. On digital image representation by the Delaunay triangulation; pp. 826–840. Proceedings 2.
Demaret L., Dyn N., Iske A. Image compression by linear splines over adaptive triangulations. Signal Process. 2006;86:1604–1616. doi: 10.1016/j.sigpro.2005.09.003. DOI
Žalik B. An efficient sweep-line Delaunay triangulation algorithm. Comput. Aided Des. 2005;37:1027–1038. doi: 10.1016/j.cad.2004.10.004. DOI
Freeman H. On the encoding of arbitrary geometric configurations. IRE Trans. Electr. Comp. 1961;EC-10:260–268. doi: 10.1109/TEC.1961.5219197. DOI
Nunes P., Marqués F., Pereira F., Gasull A. A contour-based approach to binary shape coding using a multiple grid chain code. Signal Process. Image Commun. 2000;15:585–599. doi: 10.1016/S0923-5965(99)00041-7. DOI
Liu Y.K., Žalik B., Wang P.j., Podgorelec D. Directional difference chain codes with quasi-lossless compression and run-length encoding. Signal Process. Image Commun. 2012;27:973–984. doi: 10.1016/j.image.2012.07.008. DOI
Jeromel A., Žalik B. An efficient lossy cartoon image compression method. Multimed. Tools Appl. 2020;79:433–451. doi: 10.1007/s11042-019-08126-7. DOI
Sriraam N. A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors. Int. J. Telemed. Appl. 2012;2012:302581. doi: 10.1155/2012/302581. PubMed DOI PMC
Angeline M., Suja Priyadharsini S. Hybrid compression of biomedical ECG and EEG signals based on differential clustering and encoding techniques. Int. J. Imaging Syst. Technol. 2021;31:708–717. doi: 10.1002/ima.22489. DOI
Martínez L.A., Bribiesca E., Guzmán A. Chain coding representation of voxel-based objects with enclosing, edging and intersecting trees. Pattern Anal. Appl. 2017;20:825–844. doi: 10.1007/s10044-016-0540-4. DOI
Strnad D., Kohek Š., Nerat A., Žalik B. Efficient representation of geometric tree models with level-of-detail using compressed 3D chain code. IEEE Trans. Vis. Comput. Graph. 2019;26:3177–3188. doi: 10.1109/TVCG.2019.2924430. PubMed DOI
Bertalmio M., Sapiro G., Caselles V., Ballester C. Image inpainting; Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques; New Orleans, LA, USA. 23–28 July 2000; pp. 417–424.
Qureshi M.A., Deriche M., Beghdadi A., Amin A. A critical survey of state-of-the-art image inpainting quality assessment metrics. J. Vis. Commun. Image Represent. 2017;49:177–191. doi: 10.1016/j.jvcir.2017.09.006. DOI
Wang C., Sun X., Wu F., Xiong H. Image compression with structure-aware inpainting; Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS); Island of Kos, Greece. 21–24 May 2006; p. 4.
Liu D., Sun X., Wu F., Li S., Zhang Y.Q. Image compression with edge-based inpainting. IEEE Trans. Circuits Syst. Video Technol. 2007;17:1273–1287.
Shen J., Chan T.F. Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 2002;62:1019–1043. doi: 10.1137/S0036139900368844. DOI
Chan T.F., Shen J. Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 2001;12:436–449. doi: 10.1006/jvci.2001.0487. DOI
Galić I., Weickert J., Welk M., Bruhn A., Belyaev A., Seidel H.P. International Workshop on Variational, Geometric, and Level Set Methods in Computer Vision, Proceedings of the Third International Workshop, VLSM 2005, Beijing, China, 16 October 2005. Springer; Berlin/Heidelberg, Germany: 2005. Towards PDE-based image compression; pp. 37–48.
Galić I., Weickert J., Welk M., Bruhn A., Belyaev A., Seidel H.P. Image compression with anisotropic diffusion. J. Math. Imaging Vis. 2008;31:255–269. doi: 10.1007/s10851-008-0087-0. DOI
Peter P., Hoffmann S., Nedwed F., Hoeltgen L., Weickert J. Image and Video Technology, Proceedings of the 7th Pacific-Rim Symposium, PSIVT 2015, Auckland, New Zealand, 25–27 November 2015. Springer; Cham, Switzerland: 2016. From optimised inpainting with linear PDEs towards competitive image compression codecs; pp. 63–74. Revised Selected Papers 7.
Schmaltz C., Peter P., Mainberger M., Ebel F., Weickert J., Bruhn A. Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 2014;108:222–240. doi: 10.1007/s11263-014-0702-z. DOI
Peter P., Weickert J. Colour image compression with anisotropic diffusion; Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP); Paris, France. 27–30 October 2014; pp. 4822–4826.
Hoeltgen L., Mainberger M., Hoffmann S., Weickert J., Tang C.H., Setzer S., Johannsen D., Neumann F., Doerr B. Variational Methods. De Gruyter; Vienna, Austria: 2016. Optimising spatial and tonal data for PDE-based inpainting; pp. 35–83.
Hoeltgen L., Peter P., Breuß M. Clustering-based quantisation for PDE-based image compression. Signal Image Video Process. 2018;12:411–419. doi: 10.1007/s11760-017-1173-9. DOI
Zhou Q., Yao H., Cao F., Hu Y.C. Efficient image compression based on side match vector quantization and digital inpainting. J. Real-Time Image Process. 2019;16:799–810. doi: 10.1007/s11554-018-0800-1. DOI
Satpute Y.Y., Tidke B. Data Compression and Hiding Using Advanced SMVQ and Image Inpainting; Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks (CICN); Jabalpur, India. 12–14 December 2015; pp. 1074–1077.
Peter P., Contelly J., Weickert J. Scale Space and Variational Methods in Computer Vision, Proceedings of the 7th International Conference, SSVM 2019, Hofgeismar, Germany, 30 June–4 July 2019. Springer; Cham, Switzerland: 2019. Compressing audio signals with inpainting-based sparsification; pp. 92–103. Proceedings 7.
Donoho D.L. Compressed sensing. IEEE Trans. Inf. Theory. 2006;52:1289–1306. doi: 10.1109/TIT.2006.871582. DOI
Li L., Fang Y., Liu L., Peng H., Kurths J., Yang Y. Overview of compressed sensing: Sensing model, reconstruction algorithm, and its applications. Appl. Sci. 2020;10:5909. doi: 10.3390/app10175909. DOI
Stolojescu-Crişan C., Isar A. Images compressive sensing reconstruction by inpainting; Proceedings of the 2015 International Symposium on Signals, Circuits and Systems (ISSCS); Iasi, Romania. 9–10 July 2015; pp. 1–4.
Gan L. Block compressed sensing of natural images; Proceedings of the 2007 15th International Conference on Digital Signal Processing; Cardiff, UK. 1–4 July 2007; pp. 403–406.
Mishra M., Sen Gupta G., Gui X. Investigation of energy cost of data compression algorithms in WSN for IoT applications. Sensors. 2022;22:7685. doi: 10.3390/s22197685. PubMed DOI PMC
Liu L., Nishikawa H., Zhou J., Taniguchi I., Onoye T. Computer-Vision-Oriented Adaptive Sampling in Compressive Sensing. Sensors. 2024;24:4348. doi: 10.3390/s24134348. PubMed DOI PMC
Jiang F., Tao W., Liu S., Ren J., Guo X., Zhao D. An end-to-end compression framework based on convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 2017;28:3007–3018. doi: 10.1109/TCSVT.2017.2734838. DOI
Mondal U.K., Debnath A., Mandal J. Intelligent Computing: Image Processing Based Applications. Springer; Singapore: 2020. Deep learning-based lossless audio encoder (dllae) pp. 91–101.
Schiopu I., Munteanu A. Deep-learning-based lossless image coding. IEEE Trans. Circuits Syst. Video Technol. 2019;30:1829–1842. doi: 10.1109/TCSVT.2019.2909821. DOI
Huang H., Schiopu I., Munteanu A. Deep learning based angular intra-prediction for lossless HEVC video coding; Proceedings of the 2019 Data Compression Conference (DCC); Snowbird, UT, USA. 26–29 March 2019; p. 579.
Toderici G., Vincent D., Johnston N., Jin Hwang S., Minnen D., Shor J., Covell M. Full resolution image compression with recurrent neural networks; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 5306–5314.
Agustsson E., Tschannen M., Mentzer F., Timofte R., Gool L.V. Generative adversarial networks for extreme learned image compression; Proceedings of the IEEE/CVF International Conference on Computer Vision; Seoul, Republic of Korea. 27 October–2 November 2019; pp. 221–231.
Huang Q., Liu T., Wu X., Qu T. A generative adversarial net-based bandwidth extension method for audio compression. J. Audio Eng. Soc. 2019;67:986–993. doi: 10.17743/jaes.2019.0047. DOI
Santurkar S., Budden D., Shavit N. Generative compression; Proceedings of the 2018 Picture Coding Symposium (PCS); San Francisco, CA, USA. 24–27 June 2018; pp. 258–262.
Liu T., Wang J., Liu Q., Alibhai S., Lu T., He X. High-ratio lossy compression: Exploring the autoencoder to compress scientific data. IEEE Trans. Big Data. 2021;9:22–36. doi: 10.1109/TBDATA.2021.3066151. DOI
Bolin C., Shanzhi Y., Peilin C., Shiqi W., Ye Y. Generative Visual Compression: A Review; Proceedings of the 2024 IEEE International Conference on Image Processing (ICIP 2024); Abu Dhabi, United Arab Emirates. 27–30 October 2024.
Lin J., Liu D., Yang H., Li H., Wu F. Convolutional neural network-based block up-sampling for HEVC. IEEE Trans. Circuits Syst. Video Technol. 2018;29:3701–3715. doi: 10.1109/TCSVT.2018.2884203. DOI
Zhang Y., Shen T., Ji X., Zhang Y., Xiong R., Dai Q. Residual highway convolutional neural networks for in-loop filtering in HEVC. IEEE Trans. Image Process. 2018;27:3827–3841. doi: 10.1109/TIP.2018.2815841. PubMed DOI
Yang E.H., Kieffer J.C. Simple universal lossy data compression schemes derived from the Lempel-Ziv algorithm. IEEE Trans. Inf. Theory. 1996;42:239–245. doi: 10.1109/18.481794. DOI
Luczak T., Szpankowski W. A suboptimal lossy data compression based on approximate pattern matching. IEEE Trans. Inf. Theory. 1997;43:1439–1451. doi: 10.1109/18.623143. DOI
Atallah M., Génin Y., Szpankowski W. Pattern matching image compression: Algorithmic and empirical results. IEEE Trans. Pattern Anal. Mach. Intell. 1999;21:614–627. doi: 10.1109/34.777372. DOI
Di S., Cappello F. Fast error-bounded lossy HPC data compression with SZ; Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS); Chicago, IL, USA. 23–27 May 2016; pp. 730–739.
Lindstrom P. Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 2014;20:2674–2683. doi: 10.1109/TVCG.2014.2346458. PubMed DOI
Ainsworth M., Tugluk O., Whitney B., Klasky S. Multilevel techniques for compression and reduction of scientific data—The univariate case. Comput. Vis. Sci. 2018;19:65–76. doi: 10.1007/s00791-018-00303-9. DOI
Cappello F., Di S., Li S., Liang X., Gok A.M., Tao D., Yoon C.H., Wu X.C., Alexeev Y., Chong F.T. Use cases of lossy compression for floating-point data in scientific data sets. Int. J. High Perform. Comput. Appl. 2019;33:1201–1220. doi: 10.1177/1094342019853336. DOI
Podgorelec D., Žalik B., Mongus D., Vlahek D. A New Alternating Suboptimal Dynamic Programming Algorithm with Applications for Feature Selection. Mathematics. 2024;12:1987. doi: 10.3390/math12131987. DOI
Žalik B., Strnad D., Kohek Š., Kolingerová I., Nerat A., Lukač N., Lipuš B., Žalik M., Podgorelec D. FLoCIC: A few lines of code for raster image compression. Entropy. 2023;25:533. doi: 10.3390/e25030533. PubMed DOI PMC
Nerat A., Strnad D., Žalik K.R., Žalik B. An efficient multi-resolution chain coding. IEEE Access. 2024;12:54721–54731. doi: 10.1109/ACCESS.2024.3389062. DOI
Strnad D., Žlaus D., Nerat A., Žalik B. Efficient compressed storage and fast reconstruction of large binary images using chain codes. Multimed. Tools Appl. 2024:1–19. doi: 10.1007/s11042-024-20199-7. DOI
Hácha F., Dvořák J., Káčereková Z., Váša L. Editing mesh sequences with varying connectivity. Comput. Graph. 2024;121:103943. doi: 10.1016/j.cag.2024.103943. DOI
Červenka M., Skala V. Behavioral study of various radial basis functions for approximation and interpolation purposes; Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI); Herlany, Slovakia. 23–25 January 2020; pp. 135–140.