A New Transformation Technique for Reducing Information Entropy: A Case Study on Greyscale Raster Images
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-04622L
Czech Science Foundation
J2-4458
Slovenian Research and Innovation Agency
P2-0041
Slovenian Research and Innovation Agency
PubMed
38136471
PubMed Central
PMC10742840
DOI
10.3390/e25121591
PII: e25121591
Knihovny.cz E-zdroje
- Klíčová slova
- Hilbert space filling curve, algorithm, computer science, information entropy, string transformation,
- Publikační typ
- časopisecké články MeSH
This paper proposes a new string transformation technique called Move with Interleaving (MwI). Four possible ways of rearranging 2D raster images into 1D sequences of values are applied, including scan-line, left-right, strip-based, and Hilbert arrangements. Experiments on 32 benchmark greyscale raster images of various resolutions demonstrated that the proposed transformation reduces information entropy to a similar extent as the combination of the Burrows-Wheeler transform followed by the Move-To-Front or the Inversion Frequencies. The proposed transformation MwI yields the best result among all the considered transformations when the Hilbert arrangement is applied.
Zobrazit více v PubMed
Cover T.M., Thomas J.A. Elements of Information Theory. 2nd ed. Wiley; Hoboken, NJ, USA: 2006.
Shannon C.E. A Mathematical Theory of Communication. AT&T Tech. J. 1948;27:379–423.
Liu S., Xu M., Qin Y., Lukać N. Knowledge Graph Alignment Network with Node-Level Strong Fusion. Appl. Sci. 2022;12:9434. doi: 10.3390/app12199434. DOI
Gray R.M. Entropy and Information Theory. 2nd ed. Springer; New York, NY, USA: 2011.
Sabirov D.S., Shepelevich I.S. Information Entropy in Chemistry: An Overview. Entropy. 2021;23:1240. doi: 10.3390/e23101240. PubMed DOI PMC
Vasco-Olmo J.M., Díaz F.A., García-Collado A., Dorado-Vicente R. Experimental evaluation of crack shielding during fatigue crack growth using digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2013;38:223–237. doi: 10.1111/ffe.12136. DOI
Ben-Naim A. Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem. Entropy. 2017;19:48. doi: 10.3390/e19020048. PubMed DOI PMC
Sayood K. Introduction to Data Compression. 4th ed. Morgan Kaufman; Waltham, MA, USA: 2012.
Rahman M.A., Hamada M. Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry. 2019;11:1274. doi: 10.3390/sym11101274. DOI
Salomon D., Motta G. Handbook of Data Compression. 5th ed. Springer; London, UK: 2010.
Ryabko B.Y. Data compression by means of a ‘book stack’. Probl. Pereda. Inform. 1980;16:265–269.
Arnavut Z., Magliveras S.S. Block sorting and compression. In: Storer J.A., Cohn M., editors. Proceedings of the IEEE Data Compression Conference, DCC’97, Snowbird, UT, USA, 25–27 March 1997. IEEE Computer Society Press; Los Alamitos, CA, USA: 1997. pp. 181–190.
Abel J. Improvements to the Burrows-Wheeler Compression Algorithm: After BWT Stages. 2003. [(accessed on 1 November 2023)]. Available online: https://api.semanticscholar.org/CorpusID:16110299.
Bentley J.L., Sleator D.D., Tarjan R.E., Wei V.K. A Locally Adaptive Data Compression Scheme. Commun. ACM. 1986;29:320–330. doi: 10.1145/5684.5688. DOI
Deorowicz S. Improvements to Burrows-Wheeler Compression Algorithm. Softw. Pract. Exper. 2000;30:1465–1483. doi: 10.1002/1097-024X(20001110)30:13<1465::AID-SPE345>3.0.CO;2-D. DOI
Binder E. Distance Coding. 2000. [(accessed on 14 November 2023)]. Available online: https://groups.google.com/g/comp.compression/c/96DHNJgf0NM/m/Ep15oLxq1CcJ.
Albers S. Improved randomized on-line algorithms for the list update problem. SIAM J. Comput. 1998;27:682–693. doi: 10.1137/S0097539794277858. DOI
Burrows M., Wheeler D.J. A Block-Sorting Lossless Data Compression Algorithm. Digital Systems Research Center; Palo Alto, CA, USA: 1994. (Technical Report No. 124).
Abel J. Post BWT stages of the Burrows-Wheeler compression Algorithm. Softw. Pract. Exper. 2010;40:751–777. doi: 10.1002/spe.982. DOI
Dorrigiv R., López-Ortiz A., Munro J.I. An Application of Self-organizing Data Structures to Compression. In: Vahrenhold J., editor. Experimental Algorithms, Proceedings of the 8th International Symposium on Experimental Algorithms, SEA 2009, Dortmund, Germany, 3–6 June 2009. Springer; Berlin, Germany: 2009. pp. 137–148. (Lecture Notes in Computer Science 5526).
Žalik B., Lukač N. Chain code lossless compression using Move-To-Front transform and adaptive Run-Length Encoding. Signal Process. Image Commun. 2014;29:96–106. doi: 10.1016/j.image.2013.09.002. DOI
Arnavut Z. Move-To-Front and Inversion Coding. In: Cohn M., Storer J.A., editors. Proceedings of the IEEE Data Compression Conference, DCC’2000, Snowbird, UT, USA, 28–30 March 2000. IEEE Computer Society Press; Los Alamitos, CA, USA: 2000. pp. 193–202.
Adjeroh D., Bell T., Mukherjee A. The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching. 2nd ed. Springer Science + Business Media; New York, NY, USA: 2008.
Lee Y.L., Han K.H., Sullivan G.J. Improved lossless intra coding for H. 264/MPEG-4 AVC. IEEE Trans. Image Process. 2006;15:2610–2615. PubMed
Khademi A., Krishnan S. Comparison of JPEG 2000 and other lossless compression schemes for digital mammograms. IEEE Trans. Image Process. 2005;25:693–695. PubMed
Barina D. Comparison of Lossless Image Formats. arXiv. 20212108.02557
Ulacha G., Łazoryszczak M. Lossless Image Coding Using Non-MMSE Algorithms to Calculate Linear Prediction Coefficients. Entropy. 2023;25:156. doi: 10.3390/e25010156. PubMed DOI PMC
Kohek Š., Strnad D., Žalik B., Kolmanič S. Interactive synthesis and visualization of self-organizing trees for large-scale forest succession simulation. Multimed. Syst. 2019;25:213–227. doi: 10.1007/s00530-018-0597-6. DOI
Nong G., Zhang S., Chan W.H. Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 2011;60:1471–1484. doi: 10.1109/TC.2010.188. DOI
Kärkkäinen J., Sanders P., Burkhardt S. Linear work suffix array construction. J. ACM. 2017;53:918–936. doi: 10.1145/1217856.1217858. DOI
Bader M. Space-Filling Curves—An Introduction with Applications in Scientific Computing. Springer; Berlin, Germany: 2013.
Chung K.-L., Huang Y.-L., Liu Y.-W. Efficient algorithms for coding Hilbert curve of arbitrary-sized image and application to window query. Inf. Sci. 2007;17:2130–2151. doi: 10.1016/j.ins.2006.12.003. DOI
Žalik B., Mongus D., Rizman Žalik K., Lukač N. Boolean Operations on Rasterized Shapes Represented by Chain Codes Using Space Filling Curves. J. Vis. Commun. Image Represent. 2017;49:420–430. doi: 10.1016/j.jvcir.2017.10.003. DOI
Lawder J.K., King P.J.H. Using state diagrams for Hilbert curve mappings. Int. J. Comput. Math. 2001;78:327–342. doi: 10.1080/00207160108805115. DOI
Žalik B., Strnad D., Kohek Š., Kolingerová I., Nerat A., Lukač N., Lipuš B., Žalik M., Podgorelec D. FLoCIC: A Few Lines of Code for Raster Image Compression. Entropy. 2023;25:533. doi: 10.3390/e25030533. PubMed DOI PMC