A New Transformation Technique for Reducing Information Entropy: A Case Study on Greyscale Raster Images
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
23-04622L
Czech Science Foundation
J2-4458
Slovenian Research and Innovation Agency
P2-0041
Slovenian Research and Innovation Agency
PubMed
38136471
PubMed Central
PMC10742840
DOI
10.3390/e25121591
PII: e25121591
Knihovny.cz E-resources
- Keywords
- Hilbert space filling curve, algorithm, computer science, information entropy, string transformation,
- Publication type
- Journal Article MeSH
This paper proposes a new string transformation technique called Move with Interleaving (MwI). Four possible ways of rearranging 2D raster images into 1D sequences of values are applied, including scan-line, left-right, strip-based, and Hilbert arrangements. Experiments on 32 benchmark greyscale raster images of various resolutions demonstrated that the proposed transformation reduces information entropy to a similar extent as the combination of the Burrows-Wheeler transform followed by the Move-To-Front or the Inversion Frequencies. The proposed transformation MwI yields the best result among all the considered transformations when the Hilbert arrangement is applied.
See more in PubMed
Cover T.M., Thomas J.A. Elements of Information Theory. 2nd ed. Wiley; Hoboken, NJ, USA: 2006.
Shannon C.E. A Mathematical Theory of Communication. AT&T Tech. J. 1948;27:379–423.
Liu S., Xu M., Qin Y., Lukać N. Knowledge Graph Alignment Network with Node-Level Strong Fusion. Appl. Sci. 2022;12:9434. doi: 10.3390/app12199434. DOI
Gray R.M. Entropy and Information Theory. 2nd ed. Springer; New York, NY, USA: 2011.
Sabirov D.S., Shepelevich I.S. Information Entropy in Chemistry: An Overview. Entropy. 2021;23:1240. doi: 10.3390/e23101240. PubMed DOI PMC
Vasco-Olmo J.M., Díaz F.A., García-Collado A., Dorado-Vicente R. Experimental evaluation of crack shielding during fatigue crack growth using digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2013;38:223–237. doi: 10.1111/ffe.12136. DOI
Ben-Naim A. Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem. Entropy. 2017;19:48. doi: 10.3390/e19020048. PubMed DOI PMC
Sayood K. Introduction to Data Compression. 4th ed. Morgan Kaufman; Waltham, MA, USA: 2012.
Rahman M.A., Hamada M. Lossless Image Compression Techniques: A State-of-the-Art Survey. Symmetry. 2019;11:1274. doi: 10.3390/sym11101274. DOI
Salomon D., Motta G. Handbook of Data Compression. 5th ed. Springer; London, UK: 2010.
Ryabko B.Y. Data compression by means of a ‘book stack’. Probl. Pereda. Inform. 1980;16:265–269.
Arnavut Z., Magliveras S.S. Block sorting and compression. In: Storer J.A., Cohn M., editors. Proceedings of the IEEE Data Compression Conference, DCC’97, Snowbird, UT, USA, 25–27 March 1997. IEEE Computer Society Press; Los Alamitos, CA, USA: 1997. pp. 181–190.
Abel J. Improvements to the Burrows-Wheeler Compression Algorithm: After BWT Stages. 2003. [(accessed on 1 November 2023)]. Available online: https://api.semanticscholar.org/CorpusID:16110299.
Bentley J.L., Sleator D.D., Tarjan R.E., Wei V.K. A Locally Adaptive Data Compression Scheme. Commun. ACM. 1986;29:320–330. doi: 10.1145/5684.5688. DOI
Deorowicz S. Improvements to Burrows-Wheeler Compression Algorithm. Softw. Pract. Exper. 2000;30:1465–1483. doi: 10.1002/1097-024X(20001110)30:13<1465::AID-SPE345>3.0.CO;2-D. DOI
Binder E. Distance Coding. 2000. [(accessed on 14 November 2023)]. Available online: https://groups.google.com/g/comp.compression/c/96DHNJgf0NM/m/Ep15oLxq1CcJ.
Albers S. Improved randomized on-line algorithms for the list update problem. SIAM J. Comput. 1998;27:682–693. doi: 10.1137/S0097539794277858. DOI
Burrows M., Wheeler D.J. A Block-Sorting Lossless Data Compression Algorithm. Digital Systems Research Center; Palo Alto, CA, USA: 1994. (Technical Report No. 124).
Abel J. Post BWT stages of the Burrows-Wheeler compression Algorithm. Softw. Pract. Exper. 2010;40:751–777. doi: 10.1002/spe.982. DOI
Dorrigiv R., López-Ortiz A., Munro J.I. An Application of Self-organizing Data Structures to Compression. In: Vahrenhold J., editor. Experimental Algorithms, Proceedings of the 8th International Symposium on Experimental Algorithms, SEA 2009, Dortmund, Germany, 3–6 June 2009. Springer; Berlin, Germany: 2009. pp. 137–148. (Lecture Notes in Computer Science 5526).
Žalik B., Lukač N. Chain code lossless compression using Move-To-Front transform and adaptive Run-Length Encoding. Signal Process. Image Commun. 2014;29:96–106. doi: 10.1016/j.image.2013.09.002. DOI
Arnavut Z. Move-To-Front and Inversion Coding. In: Cohn M., Storer J.A., editors. Proceedings of the IEEE Data Compression Conference, DCC’2000, Snowbird, UT, USA, 28–30 March 2000. IEEE Computer Society Press; Los Alamitos, CA, USA: 2000. pp. 193–202.
Adjeroh D., Bell T., Mukherjee A. The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching. 2nd ed. Springer Science + Business Media; New York, NY, USA: 2008.
Lee Y.L., Han K.H., Sullivan G.J. Improved lossless intra coding for H. 264/MPEG-4 AVC. IEEE Trans. Image Process. 2006;15:2610–2615. PubMed
Khademi A., Krishnan S. Comparison of JPEG 2000 and other lossless compression schemes for digital mammograms. IEEE Trans. Image Process. 2005;25:693–695. PubMed
Barina D. Comparison of Lossless Image Formats. arXiv. 20212108.02557
Ulacha G., Łazoryszczak M. Lossless Image Coding Using Non-MMSE Algorithms to Calculate Linear Prediction Coefficients. Entropy. 2023;25:156. doi: 10.3390/e25010156. PubMed DOI PMC
Kohek Š., Strnad D., Žalik B., Kolmanič S. Interactive synthesis and visualization of self-organizing trees for large-scale forest succession simulation. Multimed. Syst. 2019;25:213–227. doi: 10.1007/s00530-018-0597-6. DOI
Nong G., Zhang S., Chan W.H. Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 2011;60:1471–1484. doi: 10.1109/TC.2010.188. DOI
Kärkkäinen J., Sanders P., Burkhardt S. Linear work suffix array construction. J. ACM. 2017;53:918–936. doi: 10.1145/1217856.1217858. DOI
Bader M. Space-Filling Curves—An Introduction with Applications in Scientific Computing. Springer; Berlin, Germany: 2013.
Chung K.-L., Huang Y.-L., Liu Y.-W. Efficient algorithms for coding Hilbert curve of arbitrary-sized image and application to window query. Inf. Sci. 2007;17:2130–2151. doi: 10.1016/j.ins.2006.12.003. DOI
Žalik B., Mongus D., Rizman Žalik K., Lukač N. Boolean Operations on Rasterized Shapes Represented by Chain Codes Using Space Filling Curves. J. Vis. Commun. Image Represent. 2017;49:420–430. doi: 10.1016/j.jvcir.2017.10.003. DOI
Lawder J.K., King P.J.H. Using state diagrams for Hilbert curve mappings. Int. J. Comput. Math. 2001;78:327–342. doi: 10.1080/00207160108805115. DOI
Žalik B., Strnad D., Kohek Š., Kolingerová I., Nerat A., Lukač N., Lipuš B., Žalik M., Podgorelec D. FLoCIC: A Few Lines of Code for Raster Image Compression. Entropy. 2023;25:533. doi: 10.3390/e25030533. PubMed DOI PMC