Effect of Transmural Differences in Excitation-Contraction Delay and Contraction Velocity on Left Ventricle Isovolumic Contraction: A Simulation Study

. 2018 ; 2018 () : 4798512. [epub] 20180510

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29862273

Recent studies have shown that left ventricle (LV) exhibits considerable transmural differences in active mechanical properties induced by transmural differences in electrical activity, excitation-contraction coupling, and contractile properties of individual myocytes. It was shown that the time between electrical and mechanical activation of myocytes (electromechanical delay: EMD) decreases from subendocardium to subepicardium and, on the contrary, the myocyte shortening velocity (MSV) increases in the same direction. To investigate the physiological importance of this inhomogeneity, we developed a new finite element model of LV incorporating the observed transmural gradients in EMD and MSV. Comparative simulations with the model showed that when EMD or MSV or both were set constant across the LV wall, the LV contractility during isovolumic contraction (IVC) decreased significantly ((dp/dt)max⁡ was reduced by 2 to 38% and IVC was prolonged by 18 to 73%). This was accompanied by an increase of transmural differences in wall stress. These results suggest that the transmural differences in EMD and MSV play an important role in physiological contractility of LV by synchronising the contraction of individual layers of ventricular wall during the systole. Reduction or enhancement of these differences may therefore impair the function of LV and contribute to heart failure.

Zobrazit více v PubMed

Chabiniok R., Wang V. Y., Hadjicharalambous M., et al. Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics. 2016;6(2) doi: 10.1098/rsfs.2015.0083.20150083 PubMed DOI PMC

Sack K. L., Davies N. H., Guccione J. M., Franz T. Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction. 2016;21(6):815–826. doi: 10.1007/s10741-016-9528-9. PubMed DOI PMC

Lopez-Perez A., Sebastian R., Ferrero J. M. Three-dimensional cardiac computational modelling: methods, features and applications. 2015;14(1, article no. 35) doi: 10.1186/s12938-015-0033-5. PubMed DOI PMC

Shen J. J., Xu F. Y., Yang W. A. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity. 2016;75:63–73. doi: 10.1016/j.compbiomed.2016.05.012. PubMed DOI

Meoli A., Cutrì E., Krishnamurthy A., et al. A multiscale model for the study of cardiac biomechanics in single-ventricle surgeries: A clinical case. 2015;5(2) doi: 10.1098/rsfs.2014.0079.20140079 PubMed DOI PMC

Palit A., Bhudia S. K., Arvanitis T. N., Turley G. A., Williams M. A. Computational modelling of left-ventricular diastolic mechanics: Effect of fibre orientation and right-ventricle topology. 2015;48(4):604–612. doi: 10.1016/j.jbiomech.2014.12.054. PubMed DOI

Gao H., Carrick D., Berry C., Griffith B. E., Luo X. Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. 2014;79(5):978–1010. doi: 10.1093/imamat/hxu029. PubMed DOI PMC

Genet M., Lee L. C., Nguyen R., et al. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: A target for in silico design of heart failure treatments. 2014;117(2):142–152. doi: 10.1152/japplphysiol.00255.2014. PubMed DOI PMC

Xia H., Wong K., Zhao X. A fully coupled model for electromechanics of the heart. 2012:10. doi: 10.1155/2012/927279.927279 PubMed DOI PMC

Göktepe S., Kuhl E. Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. 2010;45(2-3):227–243. doi: 10.1007/s00466-009-0434-z. DOI

Nickerson D., Smith N., Hunter P. New developments in a strongly coupled cardiac electromechanical model. 2005;7(2):S118–S127. doi: 10.1016/j.eupc.2005.04.009. PubMed DOI

Dorri F., Niederer P. F., Lunkenheimer P. P. A finite element model of the human left ventricular systole. 2006;9(5):319–341. doi: 10.1080/10255840600960546. PubMed DOI

Gültekin O., Sommer G., Holzapfel G. A. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. 2016;19(15):1647–1664. doi: 10.1080/10255842.2016.1176155. PubMed DOI

Curtiss E. I., Matthews R. G., Shaver J. A. Mechanism of normal splitting of the second heart sound. 1975;51(1):157–164. doi: 10.1161/01.CIR.51.1.157. PubMed DOI

Manolas J. Invasive and noninvasive assessment of exercise-induced ischemic diastolic response using pressure transducers. 2015;11(1):90–99. doi: 10.2174/1573403X10666140704111537. PubMed DOI PMC

Kern M. J., Sorajja P., Lim M. J. Philadelphia, Pa, USA: Elsevier; 2015.

Cordeiro J. M., Greene L., Heilmann C., Antzelevitch D., Antzelevitch C. Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. 2004;286(4):H1471–H1479. doi: 10.1152/ajpheart.00748.2003. PubMed DOI

Antzelevitch C., Sicouri S., Litovsky S. H., et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. 1991;69(6):1427–1449. doi: 10.1161/01.RES.69.6.1427. PubMed DOI

Campbell S. G., Howard E., Aguado-Sierra J., et al. Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics. 2009;94(5):541–552. doi: 10.1113/expphysiol.2008.044057. PubMed DOI PMC

Von Deuster C., Stoeck C. T., Genet M., Atkinson D., Kozerke S. A reference dataset of in-vivo human left-ventricular fiber architecture in systole and diastole. 2015:1–4. doi: 10.1186/1532-429X-17-S1-Q112. DOI

Streeter D. D., Jr., Spotnitz H. M., Patel D. P., Ross J., Jr., Sonnenblick E. H. Fiber orientation in the canine left ventricle during diastole and systole. 1969;24(3):339–347. doi: 10.1161/01.res.24.3.339. PubMed DOI

LeGrice I. J., Smaill B. H., Chai L. Z., Edgar S. G., Gavin J. B., Hunter P. J. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. 1995;269(2):H571–H582. doi: 10.1152/ajpheart.1995.269.2.H571. PubMed DOI

Sommer G., Schriefl A. J., Andrä M., et al. Biomechanical properties and microstructure of human ventricular myocardium. 2015;24, article no. 3762:172–192. doi: 10.1016/j.actbio.2015.06.031. PubMed DOI

Iribe G., Helmes M., Kohl P. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. 2007;292(3):H1487–H1497. doi: 10.1152/ajpheart.00909.2006. PubMed DOI

Taggart P., Sutton P. M., Opthof T., et al. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. 2000;32(4):621–630. doi: 10.1006/jmcc.2000.1105. PubMed DOI

Glukhov A. V., Fedorov V. V., Kalish P. W., et al. Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy. 2012;125(15):1835–1847. doi: 10.1161/CIRCULATIONAHA.111.047274. PubMed DOI PMC

Poon B. Y., Ward C. A., Cooper C. B., Giles W. R., Burns A. R., Kubes P. Alpha4-integrin mediates neutrophil-induced free radical injury to cardiac myocytes. 2001;152(5):857–866. doi: 10.1083/jcb.152.5.857. PubMed DOI PMC

Sys S. U., De Keulenaer G. W., Brutsaert D. L. Reappraisal of the Multicellular Preparation for the In Vitro Physiopharmacological Evaluation of Myocardial Performance. In: Pollack G. H., Sugi H., editors. Vol. 453. Boston, MA, USA: Springer; 1998. pp. 441–451. (Advances in Experimental Medicine and Biology). PubMed DOI

Boyett M., Frampton J., Kirby M. The length, width and volume of isolated rat and ferret ventricular myocytes during twitch contractions and changes in osmotic strength. 1991;76(2):259–270. doi: 10.1113/expphysiol.1991.sp003492. PubMed DOI

Cordeiro J. M., Calloe K., Aschar-Sobbi R., et al. Physiological roles of the transient outward current Ito in normal and diseased hearts. 2016;8(1):143–159. doi: 10.2741/S454. PubMed DOI

Moreno R., Zamorano J., Almería C., et al. Isovolumic contraction time by pulsed-wave Doppler tissue imaging in aortic stenosis. 2003;4(4):279–285. doi: 10.1016/S1525-2167(03)00009-X. PubMed DOI

Bols J., Degroote J., Trachet B., Verhegghe B., Segers P., Vierendeels J. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. 2013;246:10–17. doi: 10.1016/j.cam.2012.10.034. DOI

Baicu C. F., Zile M. R., Aurigemma G. P., Gaasch W. H. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. 2005;111(18):2306–2312. doi: 10.1161/01.CIR.0000164273.57823.26. PubMed DOI

Hamlin R. L., del Rio C. dP/dt(max) - A measure of baroinometry. 2012;66(2):63–65. doi: 10.1016/j.vascn.2012.01.001. PubMed DOI

Glukhov A. V., Fedorov V. V., Lou Q., et al. Transmural dispersion of repolarization in failing and nonfailing human ventricle. 2010;106(5):981–991. doi: 10.1161/CIRCRESAHA.109.204891. PubMed DOI PMC

Bányász T., Fülöp L., Magyar J., Szentandrássy N., Varró A., Nánási P. P. Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. 2003;58(1):66–75. doi: 10.1016/S0008-6363(02)00853-2. PubMed DOI

McIntosh M. A., Cobbe S. M., Smith G. L. Heterogeneous changes in action potential and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. 2000;45(2):397–409. doi: 10.1016/S0008-6363(99)00360-0. PubMed DOI

Li G., Feng J., Yue L., Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. 1998;275(2):H369–H377. doi: 10.1152/ajpheart.1998.275.2.H369. PubMed DOI

Bryant S. M., Wan X., Shipsey S. J., Hart G. Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. 1998;40(2):322–331. doi: 10.1016/S0008-6363(98)00133-3. PubMed DOI

Wettwer E., Amos G. J., Posival H., Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. 1994;75(3):473–482. doi: 10.1161/01.RES.75.3.473. PubMed DOI

Clark R. B., Bouchard R. A., Salinas-Stefanon E., Sanchez-Chapula J., Giles W. R. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. 1993;27(10):1795–1799. doi: 10.1093/cvr/27.10.1795. PubMed DOI

Khokhlova A., Balakina-Vikulova N., Katsnelson L., Iribe G., Solovyova O. Transmural cellular heterogeneity in myocardial electromechanics. doi: 10.1007/s12576-017-0541-0. PubMed DOI PMC

Lou Q., Fedorov V. V., Glukhov A. V., Moazami N., Fast V. G., Efimov I. R. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. 2011;123(17):1881–1890. doi: 10.1161/circulationaha.110.989707. PubMed DOI PMC

Laurita K. R., Katra R., Wible B., Wan X., Koo M. H. Transmural heterogeneity of calcium handling in canine. 2003;92(6):668–675. doi: 10.1161/01.res.0000062468.25308.27. PubMed DOI

Wan X., Bryant S. M., Hart G. A topographical study of mechanical and electrical properties of single myocytes isolated from normal guinea-pig ventricular muscle. 2003;202(6):525–536. doi: 10.1046/j.1469-7580.2003.00187.x. PubMed DOI PMC

Bryant S. M., Shipsey S. J., Hart G. Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. 1997;35(2):315–323. doi: 10.1016/S0008-6363(97)00111-9. PubMed DOI

Stelzer J. E., Norman H. S., Chen P. P., Patel J. R., Moss R. L. Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle. 2008;586(21):5203–5214. doi: 10.1113/jphysiol.2008.160390. PubMed DOI PMC

Campbell S. G., Flaim S. N., Leem C. H., McCulloch A. D. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model. 2008;366(1879):3361–3380. doi: 10.1098/rsta.2008.0088. PubMed DOI PMC

Anderson T., Wulfkuhle J., Petricoin E., III, Winslow R. L. High resolution mapping of the cardiac transmural proteome using reverse phase protein microarrays. 2011;10(7) doi: 10.1074/mcp.M111.008037. PubMed DOI PMC

Ait Mou Y., Le Guennec J.-Y., Mosca E., De Tombe P. P., Cazorla O. Differential contribution of cardiac sarcomeric proteins in the myofibrillar force response to stretch. 2008;457(1):25–36. doi: 10.1007/s00424-008-0501-x. PubMed DOI PMC

Cazorla O., Freiburg A., Helmes M., et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. 2000;86(1):59–67. doi: 10.1161/01.RES.86.1.59. PubMed DOI

Frisk M., Koivumäki J. T., Norseng P. A., Maleckar M. M., Sejersted O. M., Louch W. E. Variable t-tubule organization and Ca2+ homeostasis across the atria. 2014;307(4):H609–H620. doi: 10.1152/ajpheart.00295.2014. PubMed DOI

Carruth E. D., McCulloch A. D., Omens J. H. Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload. 2016;122(3):215–226. doi: 10.1016/j.pbiomolbio.2016.11.004. PubMed DOI PMC

Ashikaga H., Coppola B. A., Hopenfeld B., Leifer E. S., McVeigh E. R., Omens J. H. Transmural Dispersion of Myofiber Mechanics. Implications for Electrical Heterogeneity In Vivo. 2007;49(8):909–916. doi: 10.1016/j.jacc.2006.07.074. PubMed DOI PMC

Haynes P., Nava K. E., Lawson B. A., et al. Transmural heterogeneity of cellular level power output is reduced in human heart failure. 2014;72:1–8. doi: 10.1016/j.yjmcc.2014.02.008. PubMed DOI PMC

Vendelin M., Bovendeerd P. H. M., Engelbrecht J., Arts T. Optimizing ventricular fibers: Uniform strain or stress, but not ATP consumption, leads to high efficiency. 2002;283(3):H1072–H1081. doi: 10.1152/ajpheart.00874.2001. PubMed DOI

He Q., Feng Y., Wang Y. Transient outward potassium channel: a heart failure mediator. 2015;20(3):349–362. doi: 10.1007/s10741-015-9474-y. PubMed DOI

Sah R., Ramirez R. J., Backx P. H. Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: Role of phase-1 action potential repolarization in excitation-contraction coupling. 2002;90(2):165–173. doi: 10.1161/hh0202.103315. PubMed DOI

Sah R., Ramirez R. J., Oudit G. Y., et al. Regulation of cardiac excitation-contraction coupling by action potential repolarization: Role of the transient outward potassium current (Ito) 2003;546(1):5–18. doi: 10.1113/jphysiol.2002.026468. PubMed DOI PMC

Reiser P. J., Portman M. A., Ning X.-H., Moravec C. S. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. 2001;280(4):H1814–H1820. doi: 10.1152/ajpheart.2001.280.4.H1814. PubMed DOI

Miyata S., Minobe W., Bristow M. R., Leinwand L. A. Myosin heavy chain isoform expression in the failing and nonfailing human heart. 2000;86(4):386–390. doi: 10.1161/01.RES.86.4.386. PubMed DOI

Guo A., Zhang C., Wei S., Chen B., Song L.-S. Emerging mechanisms of T-tubule remodelling in heart failure. 2013;98(2):204–215. doi: 10.1093/cvr/cvt020. PubMed DOI PMC

Xiong W., Tian Y., DiSilvestre D., Tomaselli G. F. Transmural heterogeneity of Na+-Ca2+ exchange: Evidence for differential expression in normal and failing hearts. 2005;97(3):207–209. doi: 10.1161/01.RES.0000175935.08283.27. PubMed DOI

Prestle J., Dieterich S., Preuss M., Bieligk U., Hasenfuss G. Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart. 1999;43(2):323–331. doi: 10.1016/S0008-6363(99)00119-4. PubMed DOI

Durrer D., van Dam R. T., Freud G. E., Janse M. J., Meijler F. L., Arzbaecher R. C. Total excitation of the isolated human heart. 1970;41(6):899–912. doi: 10.1161/01.cir.41.6.899. PubMed DOI

Dokos S., Smaill B. H., Young A. A., LeGrice I. J. Shear properties of passive ventricular myocardium. 2002;283(6):H2650–H2659. doi: 10.1152/ajpheart.00111.2002. PubMed DOI

Nassal D. M., Wan X., Liu H., Deschênes I. Myocardial KChIP2 expression in Guinea pig resolves an expanded electrophysiologic role. 2016;11(1) doi: 10.1371/journal.pone.0146561.e0146561 PubMed DOI PMC

Cheng H., Cannell M. B., Hancox J. C. Differential responses of rabbit ventricular and atrial transient outward current (Ito) to the Ito modulator NS5806. 2017;5(5) doi: 10.14814/phy2.13172.e13172 PubMed DOI PMC

Sedmera D., Gourdie R. G. Why do we have Purkinje fibers deep in our heart? 2014;63:S9–S18. PubMed

Ryu S., Yamamoto S., Andersen C. R., Nakazawa K., Miyake F., James T. N. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. 2009;292(1):12–22. doi: 10.1002/ar.20827. PubMed DOI

Oosthoek P. W., Viragh S., Lamers W. H., Moorman A. F. M. Immunohistochemical delineation of the conduction system: II: The atrioventricular node and Purkinje fibers. 1993;73(3):482–491. doi: 10.1161/01.RES.73.3.482. PubMed DOI

Hamlin R. L., Smith C. R. Categorization of Common Domestic Mammals Based upon Their Ventricular Activation Process. 1965;127(1):195–203. doi: 10.1111/j.1749-6632.1965.tb49403.x. PubMed DOI

Ono N., Yamaguchi T., Ishikawa H., et al. Morphological varieties of the purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy. 2009;72(3):139–149. doi: 10.1679/aohc.72.139. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace