Effect of Transmural Differences in Excitation-Contraction Delay and Contraction Velocity on Left Ventricle Isovolumic Contraction: A Simulation Study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29862273
PubMed Central
PMC5971307
DOI
10.1155/2018/4798512
Knihovny.cz E-zdroje
- MeSH
- kontrakce myokardu fyziologie MeSH
- lidé MeSH
- modely kardiovaskulární * MeSH
- počítačová simulace * MeSH
- srdce - funkce komor fyziologie MeSH
- srdeční komory * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Recent studies have shown that left ventricle (LV) exhibits considerable transmural differences in active mechanical properties induced by transmural differences in electrical activity, excitation-contraction coupling, and contractile properties of individual myocytes. It was shown that the time between electrical and mechanical activation of myocytes (electromechanical delay: EMD) decreases from subendocardium to subepicardium and, on the contrary, the myocyte shortening velocity (MSV) increases in the same direction. To investigate the physiological importance of this inhomogeneity, we developed a new finite element model of LV incorporating the observed transmural gradients in EMD and MSV. Comparative simulations with the model showed that when EMD or MSV or both were set constant across the LV wall, the LV contractility during isovolumic contraction (IVC) decreased significantly ((dp/dt)max was reduced by 2 to 38% and IVC was prolonged by 18 to 73%). This was accompanied by an increase of transmural differences in wall stress. These results suggest that the transmural differences in EMD and MSV play an important role in physiological contractility of LV by synchronising the contraction of individual layers of ventricular wall during the systole. Reduction or enhancement of these differences may therefore impair the function of LV and contribute to heart failure.
Department of Cardiovascular Diseases Faculty of Medicine Masaryk University Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Thermomechanics Czech Academy of Science Prague Czech Republic
Zobrazit více v PubMed
Chabiniok R., Wang V. Y., Hadjicharalambous M., et al. Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics. 2016;6(2) doi: 10.1098/rsfs.2015.0083.20150083 PubMed DOI PMC
Sack K. L., Davies N. H., Guccione J. M., Franz T. Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction. 2016;21(6):815–826. doi: 10.1007/s10741-016-9528-9. PubMed DOI PMC
Lopez-Perez A., Sebastian R., Ferrero J. M. Three-dimensional cardiac computational modelling: methods, features and applications. 2015;14(1, article no. 35) doi: 10.1186/s12938-015-0033-5. PubMed DOI PMC
Shen J. J., Xu F. Y., Yang W. A. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity. 2016;75:63–73. doi: 10.1016/j.compbiomed.2016.05.012. PubMed DOI
Meoli A., Cutrì E., Krishnamurthy A., et al. A multiscale model for the study of cardiac biomechanics in single-ventricle surgeries: A clinical case. 2015;5(2) doi: 10.1098/rsfs.2014.0079.20140079 PubMed DOI PMC
Palit A., Bhudia S. K., Arvanitis T. N., Turley G. A., Williams M. A. Computational modelling of left-ventricular diastolic mechanics: Effect of fibre orientation and right-ventricle topology. 2015;48(4):604–612. doi: 10.1016/j.jbiomech.2014.12.054. PubMed DOI
Gao H., Carrick D., Berry C., Griffith B. E., Luo X. Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. 2014;79(5):978–1010. doi: 10.1093/imamat/hxu029. PubMed DOI PMC
Genet M., Lee L. C., Nguyen R., et al. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: A target for in silico design of heart failure treatments. 2014;117(2):142–152. doi: 10.1152/japplphysiol.00255.2014. PubMed DOI PMC
Xia H., Wong K., Zhao X. A fully coupled model for electromechanics of the heart. 2012:10. doi: 10.1155/2012/927279.927279 PubMed DOI PMC
Göktepe S., Kuhl E. Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. 2010;45(2-3):227–243. doi: 10.1007/s00466-009-0434-z. DOI
Nickerson D., Smith N., Hunter P. New developments in a strongly coupled cardiac electromechanical model. 2005;7(2):S118–S127. doi: 10.1016/j.eupc.2005.04.009. PubMed DOI
Dorri F., Niederer P. F., Lunkenheimer P. P. A finite element model of the human left ventricular systole. 2006;9(5):319–341. doi: 10.1080/10255840600960546. PubMed DOI
Gültekin O., Sommer G., Holzapfel G. A. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. 2016;19(15):1647–1664. doi: 10.1080/10255842.2016.1176155. PubMed DOI
Curtiss E. I., Matthews R. G., Shaver J. A. Mechanism of normal splitting of the second heart sound. 1975;51(1):157–164. doi: 10.1161/01.CIR.51.1.157. PubMed DOI
Manolas J. Invasive and noninvasive assessment of exercise-induced ischemic diastolic response using pressure transducers. 2015;11(1):90–99. doi: 10.2174/1573403X10666140704111537. PubMed DOI PMC
Kern M. J., Sorajja P., Lim M. J. Philadelphia, Pa, USA: Elsevier; 2015.
Cordeiro J. M., Greene L., Heilmann C., Antzelevitch D., Antzelevitch C. Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. 2004;286(4):H1471–H1479. doi: 10.1152/ajpheart.00748.2003. PubMed DOI
Antzelevitch C., Sicouri S., Litovsky S. H., et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. 1991;69(6):1427–1449. doi: 10.1161/01.RES.69.6.1427. PubMed DOI
Campbell S. G., Howard E., Aguado-Sierra J., et al. Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics. 2009;94(5):541–552. doi: 10.1113/expphysiol.2008.044057. PubMed DOI PMC
Von Deuster C., Stoeck C. T., Genet M., Atkinson D., Kozerke S. A reference dataset of in-vivo human left-ventricular fiber architecture in systole and diastole. 2015:1–4. doi: 10.1186/1532-429X-17-S1-Q112. DOI
Streeter D. D., Jr., Spotnitz H. M., Patel D. P., Ross J., Jr., Sonnenblick E. H. Fiber orientation in the canine left ventricle during diastole and systole. 1969;24(3):339–347. doi: 10.1161/01.res.24.3.339. PubMed DOI
LeGrice I. J., Smaill B. H., Chai L. Z., Edgar S. G., Gavin J. B., Hunter P. J. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. 1995;269(2):H571–H582. doi: 10.1152/ajpheart.1995.269.2.H571. PubMed DOI
Sommer G., Schriefl A. J., Andrä M., et al. Biomechanical properties and microstructure of human ventricular myocardium. 2015;24, article no. 3762:172–192. doi: 10.1016/j.actbio.2015.06.031. PubMed DOI
Iribe G., Helmes M., Kohl P. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. 2007;292(3):H1487–H1497. doi: 10.1152/ajpheart.00909.2006. PubMed DOI
Taggart P., Sutton P. M., Opthof T., et al. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. 2000;32(4):621–630. doi: 10.1006/jmcc.2000.1105. PubMed DOI
Glukhov A. V., Fedorov V. V., Kalish P. W., et al. Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy. 2012;125(15):1835–1847. doi: 10.1161/CIRCULATIONAHA.111.047274. PubMed DOI PMC
Poon B. Y., Ward C. A., Cooper C. B., Giles W. R., Burns A. R., Kubes P. Alpha4-integrin mediates neutrophil-induced free radical injury to cardiac myocytes. 2001;152(5):857–866. doi: 10.1083/jcb.152.5.857. PubMed DOI PMC
Sys S. U., De Keulenaer G. W., Brutsaert D. L. Reappraisal of the Multicellular Preparation for the In Vitro Physiopharmacological Evaluation of Myocardial Performance. In: Pollack G. H., Sugi H., editors. Vol. 453. Boston, MA, USA: Springer; 1998. pp. 441–451. (Advances in Experimental Medicine and Biology). PubMed DOI
Boyett M., Frampton J., Kirby M. The length, width and volume of isolated rat and ferret ventricular myocytes during twitch contractions and changes in osmotic strength. 1991;76(2):259–270. doi: 10.1113/expphysiol.1991.sp003492. PubMed DOI
Cordeiro J. M., Calloe K., Aschar-Sobbi R., et al. Physiological roles of the transient outward current Ito in normal and diseased hearts. 2016;8(1):143–159. doi: 10.2741/S454. PubMed DOI
Moreno R., Zamorano J., Almería C., et al. Isovolumic contraction time by pulsed-wave Doppler tissue imaging in aortic stenosis. 2003;4(4):279–285. doi: 10.1016/S1525-2167(03)00009-X. PubMed DOI
Bols J., Degroote J., Trachet B., Verhegghe B., Segers P., Vierendeels J. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. 2013;246:10–17. doi: 10.1016/j.cam.2012.10.034. DOI
Baicu C. F., Zile M. R., Aurigemma G. P., Gaasch W. H. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. 2005;111(18):2306–2312. doi: 10.1161/01.CIR.0000164273.57823.26. PubMed DOI
Hamlin R. L., del Rio C. dP/dt(max) - A measure of baroinometry. 2012;66(2):63–65. doi: 10.1016/j.vascn.2012.01.001. PubMed DOI
Glukhov A. V., Fedorov V. V., Lou Q., et al. Transmural dispersion of repolarization in failing and nonfailing human ventricle. 2010;106(5):981–991. doi: 10.1161/CIRCRESAHA.109.204891. PubMed DOI PMC
Bányász T., Fülöp L., Magyar J., Szentandrássy N., Varró A., Nánási P. P. Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. 2003;58(1):66–75. doi: 10.1016/S0008-6363(02)00853-2. PubMed DOI
McIntosh M. A., Cobbe S. M., Smith G. L. Heterogeneous changes in action potential and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. 2000;45(2):397–409. doi: 10.1016/S0008-6363(99)00360-0. PubMed DOI
Li G., Feng J., Yue L., Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. 1998;275(2):H369–H377. doi: 10.1152/ajpheart.1998.275.2.H369. PubMed DOI
Bryant S. M., Wan X., Shipsey S. J., Hart G. Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. 1998;40(2):322–331. doi: 10.1016/S0008-6363(98)00133-3. PubMed DOI
Wettwer E., Amos G. J., Posival H., Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. 1994;75(3):473–482. doi: 10.1161/01.RES.75.3.473. PubMed DOI
Clark R. B., Bouchard R. A., Salinas-Stefanon E., Sanchez-Chapula J., Giles W. R. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. 1993;27(10):1795–1799. doi: 10.1093/cvr/27.10.1795. PubMed DOI
Khokhlova A., Balakina-Vikulova N., Katsnelson L., Iribe G., Solovyova O. Transmural cellular heterogeneity in myocardial electromechanics. doi: 10.1007/s12576-017-0541-0. PubMed DOI PMC
Lou Q., Fedorov V. V., Glukhov A. V., Moazami N., Fast V. G., Efimov I. R. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. 2011;123(17):1881–1890. doi: 10.1161/circulationaha.110.989707. PubMed DOI PMC
Laurita K. R., Katra R., Wible B., Wan X., Koo M. H. Transmural heterogeneity of calcium handling in canine. 2003;92(6):668–675. doi: 10.1161/01.res.0000062468.25308.27. PubMed DOI
Wan X., Bryant S. M., Hart G. A topographical study of mechanical and electrical properties of single myocytes isolated from normal guinea-pig ventricular muscle. 2003;202(6):525–536. doi: 10.1046/j.1469-7580.2003.00187.x. PubMed DOI PMC
Bryant S. M., Shipsey S. J., Hart G. Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. 1997;35(2):315–323. doi: 10.1016/S0008-6363(97)00111-9. PubMed DOI
Stelzer J. E., Norman H. S., Chen P. P., Patel J. R., Moss R. L. Transmural variation in myosin heavy chain isoform expression modulates the timing of myocardial force generation in porcine left ventricle. 2008;586(21):5203–5214. doi: 10.1113/jphysiol.2008.160390. PubMed DOI PMC
Campbell S. G., Flaim S. N., Leem C. H., McCulloch A. D. Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model. 2008;366(1879):3361–3380. doi: 10.1098/rsta.2008.0088. PubMed DOI PMC
Anderson T., Wulfkuhle J., Petricoin E., III, Winslow R. L. High resolution mapping of the cardiac transmural proteome using reverse phase protein microarrays. 2011;10(7) doi: 10.1074/mcp.M111.008037. PubMed DOI PMC
Ait Mou Y., Le Guennec J.-Y., Mosca E., De Tombe P. P., Cazorla O. Differential contribution of cardiac sarcomeric proteins in the myofibrillar force response to stretch. 2008;457(1):25–36. doi: 10.1007/s00424-008-0501-x. PubMed DOI PMC
Cazorla O., Freiburg A., Helmes M., et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. 2000;86(1):59–67. doi: 10.1161/01.RES.86.1.59. PubMed DOI
Frisk M., Koivumäki J. T., Norseng P. A., Maleckar M. M., Sejersted O. M., Louch W. E. Variable t-tubule organization and Ca2+ homeostasis across the atria. 2014;307(4):H609–H620. doi: 10.1152/ajpheart.00295.2014. PubMed DOI
Carruth E. D., McCulloch A. D., Omens J. H. Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload. 2016;122(3):215–226. doi: 10.1016/j.pbiomolbio.2016.11.004. PubMed DOI PMC
Ashikaga H., Coppola B. A., Hopenfeld B., Leifer E. S., McVeigh E. R., Omens J. H. Transmural Dispersion of Myofiber Mechanics. Implications for Electrical Heterogeneity In Vivo. 2007;49(8):909–916. doi: 10.1016/j.jacc.2006.07.074. PubMed DOI PMC
Haynes P., Nava K. E., Lawson B. A., et al. Transmural heterogeneity of cellular level power output is reduced in human heart failure. 2014;72:1–8. doi: 10.1016/j.yjmcc.2014.02.008. PubMed DOI PMC
Vendelin M., Bovendeerd P. H. M., Engelbrecht J., Arts T. Optimizing ventricular fibers: Uniform strain or stress, but not ATP consumption, leads to high efficiency. 2002;283(3):H1072–H1081. doi: 10.1152/ajpheart.00874.2001. PubMed DOI
He Q., Feng Y., Wang Y. Transient outward potassium channel: a heart failure mediator. 2015;20(3):349–362. doi: 10.1007/s10741-015-9474-y. PubMed DOI
Sah R., Ramirez R. J., Backx P. H. Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: Role of phase-1 action potential repolarization in excitation-contraction coupling. 2002;90(2):165–173. doi: 10.1161/hh0202.103315. PubMed DOI
Sah R., Ramirez R. J., Oudit G. Y., et al. Regulation of cardiac excitation-contraction coupling by action potential repolarization: Role of the transient outward potassium current (Ito) 2003;546(1):5–18. doi: 10.1113/jphysiol.2002.026468. PubMed DOI PMC
Reiser P. J., Portman M. A., Ning X.-H., Moravec C. S. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. 2001;280(4):H1814–H1820. doi: 10.1152/ajpheart.2001.280.4.H1814. PubMed DOI
Miyata S., Minobe W., Bristow M. R., Leinwand L. A. Myosin heavy chain isoform expression in the failing and nonfailing human heart. 2000;86(4):386–390. doi: 10.1161/01.RES.86.4.386. PubMed DOI
Guo A., Zhang C., Wei S., Chen B., Song L.-S. Emerging mechanisms of T-tubule remodelling in heart failure. 2013;98(2):204–215. doi: 10.1093/cvr/cvt020. PubMed DOI PMC
Xiong W., Tian Y., DiSilvestre D., Tomaselli G. F. Transmural heterogeneity of Na+-Ca2+ exchange: Evidence for differential expression in normal and failing hearts. 2005;97(3):207–209. doi: 10.1161/01.RES.0000175935.08283.27. PubMed DOI
Prestle J., Dieterich S., Preuss M., Bieligk U., Hasenfuss G. Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart. 1999;43(2):323–331. doi: 10.1016/S0008-6363(99)00119-4. PubMed DOI
Durrer D., van Dam R. T., Freud G. E., Janse M. J., Meijler F. L., Arzbaecher R. C. Total excitation of the isolated human heart. 1970;41(6):899–912. doi: 10.1161/01.cir.41.6.899. PubMed DOI
Dokos S., Smaill B. H., Young A. A., LeGrice I. J. Shear properties of passive ventricular myocardium. 2002;283(6):H2650–H2659. doi: 10.1152/ajpheart.00111.2002. PubMed DOI
Nassal D. M., Wan X., Liu H., Deschênes I. Myocardial KChIP2 expression in Guinea pig resolves an expanded electrophysiologic role. 2016;11(1) doi: 10.1371/journal.pone.0146561.e0146561 PubMed DOI PMC
Cheng H., Cannell M. B., Hancox J. C. Differential responses of rabbit ventricular and atrial transient outward current (Ito) to the Ito modulator NS5806. 2017;5(5) doi: 10.14814/phy2.13172.e13172 PubMed DOI PMC
Sedmera D., Gourdie R. G. Why do we have Purkinje fibers deep in our heart? 2014;63:S9–S18. PubMed
Ryu S., Yamamoto S., Andersen C. R., Nakazawa K., Miyake F., James T. N. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. 2009;292(1):12–22. doi: 10.1002/ar.20827. PubMed DOI
Oosthoek P. W., Viragh S., Lamers W. H., Moorman A. F. M. Immunohistochemical delineation of the conduction system: II: The atrioventricular node and Purkinje fibers. 1993;73(3):482–491. doi: 10.1161/01.RES.73.3.482. PubMed DOI
Hamlin R. L., Smith C. R. Categorization of Common Domestic Mammals Based upon Their Ventricular Activation Process. 1965;127(1):195–203. doi: 10.1111/j.1749-6632.1965.tb49403.x. PubMed DOI
Ono N., Yamaguchi T., Ishikawa H., et al. Morphological varieties of the purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy. 2009;72(3):139–149. doi: 10.1679/aohc.72.139. PubMed DOI