Dynamic action of the Sec machinery during initiation, protein translocation and termination
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/M003604/I
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011151/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BBSRC South West Bioscience Doctoral Training Partnership
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I006737/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I008675/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N017307/1
Biotechnology and Biological Sciences Research Council - United Kingdom
104632
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
BB/N015126/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
29877797
PubMed Central
PMC6021171
DOI
10.7554/elife.35112
PII: 35112
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, SecA, SecYEG, fluorescence, kinetics, molecular biophysics, single molecule, stochastic, structural biology,
- MeSH
- adenosintrifosfát metabolismus MeSH
- adenosintrifosfatasy chemie genetika metabolismus MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- fluorescenční mikroskopie metody MeSH
- hydrolýza MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- mutace MeSH
- proteiny - lokalizační signály genetika MeSH
- proteiny SecA MeSH
- proteiny z Escherichia coli chemie genetika metabolismus MeSH
- protonmotorická síla * MeSH
- translokační kanály SEC chemie genetika metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- adenosintrifosfatasy MeSH
- bakteriální proteiny MeSH
- proteiny - lokalizační signály MeSH
- proteiny SecA MeSH
- proteiny z Escherichia coli MeSH
- translokační kanály SEC MeSH
Protein translocation across cell membranes is a ubiquitous process required for protein secretion and membrane protein insertion. In bacteria, this is mostly mediated by the conserved SecYEG complex, driven through rounds of ATP hydrolysis by the cytoplasmic SecA, and the trans-membrane proton motive force. We have used single molecule techniques to explore SecY pore dynamics on multiple timescales in order to dissect the complex reaction pathway. The results show that SecA, both the signal sequence and mature components of the pre-protein, and ATP hydrolysis each have important and specific roles in channel unlocking, opening and priming for transport. After channel opening, translocation proceeds in two phases: a slow phase independent of substrate length, and a length-dependent transport phase with an intrinsic translocation rate of ~40 amino acids per second for the proOmpA substrate. Broad translocation rate distributions reflect the stochastic nature of polypeptide transport.
Astbury Centre for Structural Molecular Biology University of Leeds Leeds United Kingdom
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
School of Biochemistry University of Bristol Bristol United Kingdom
Zobrazit více v PubMed
Aitken CE, Marshall RA, Puglisi JD. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical Journal. 2008;94:1826–1835. doi: 10.1529/biophysj.107.117689. PubMed DOI PMC
Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife. 2016;5:e15598. doi: 10.7554/eLife.15598. PubMed DOI PMC
Arkowitz RA, Joly JC, Wickner W. Translocation can drive the unfolding of a preprotein domain. The EMBO journal. 1993;12:243–253. PubMed PMC
Bauer BW, Shemesh T, Chen Y, Rapoport TA. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell. 2014;157:1416–1429. doi: 10.1016/j.cell.2014.03.063. PubMed DOI PMC
Best RB, Hofmann H, Nettels D, Schuler B. Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophysical Journal. 2015;108:2721–2731. doi: 10.1016/j.bpj.2015.04.038. PubMed DOI PMC
Bieker KL, Phillips GJ, Silhavy TJ. The sec and prl genes of Escherichia coli. Journal of Bioenergetics and Biomembranes. 1990;22:291–310. doi: 10.1007/BF00763169. PubMed DOI
Briggs MS, Cornell DG, Dluhy RA, Gierasch LM. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science. 1986;233:206–208. doi: 10.1126/science.2941862. PubMed DOI
Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 1990;62:649–657. doi: 10.1016/0092-8674(90)90111-Q. PubMed DOI
Cannon KS, Or E, Clemons WM, Shibata Y, Rapoport TA. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. The Journal of Cell Biology. 2005;169:219–225. doi: 10.1083/jcb.200412019. PubMed DOI PMC
Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370:20150025. doi: 10.1098/rstb.2015.0025. PubMed DOI PMC
Cook HA, Kumamoto CA. Overproduction of SecA suppresses the export defect caused by a mutation in the gene encoding the Escherichia coli export chaperone secB. Journal of Bacteriology. 1999;181:3010–3017. PubMed PMC
Corey RA, Allen WJ, Collinson I. Protein translocation: what's the problem? Biochemical Society Transactions. 2016a;44:753–759. doi: 10.1042/BST20160047. PubMed DOI PMC
Corey RA, Allen WJ, Komar J, Masiulis S, Menzies S, Robson A, Collinson I. Unlocking the bacterial SecY translocon. Structure. 2016b;24:518–527. doi: 10.1016/j.str.2016.02.001. PubMed DOI PMC
De Keyzer J, Van Der Does C, Driessen AJ. Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. Journal of Biological Chemistry. 2002;277:46059–46065. doi: 10.1074/jbc.M208449200. PubMed DOI
Deville K, Gold VA, Robson A, Whitehouse S, Sessions RB, Baldwin SA, Radford SE, Collinson I. The oligomeric state and arrangement of the active bacterial translocon. Journal of Biological Chemistry. 2011;286:4659–4669. doi: 10.1074/jbc.M110.175638. PubMed DOI PMC
Eggeling C, Fries JR, Brand L, Günther R, Seidel CA. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. PNAS. 1998;95:1556–1561. doi: 10.1073/pnas.95.4.1556. PubMed DOI PMC
Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M. Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature. 1980;285:82–85. doi: 10.1038/285082a0. PubMed DOI
Erlandson KJ, Or E, Osborne AR, Rapoport TA. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. Journal of Biological Chemistry. 2008;283:15709–15715. doi: 10.1074/jbc.M710356200. PubMed DOI PMC
Flower AM, Osborne RS, Silhavy TJ. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. The EMBO journal. 1995;14:884–893. PubMed PMC
Gold VA, Duong F, Collinson I. Structure and function of the bacterial Sec translocon. Molecular Membrane Biology. 2007;24:387–394. doi: 10.1080/09687680701416570. PubMed DOI
Gopich IV, Szabo A. Single-molecule FRET with diffusion and conformational dynamics. The Journal of Physical Chemistry B. 2007;111:12925–12932. doi: 10.1021/jp075255e. PubMed DOI
Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. Signal peptides are allosteric activators of the protein translocase. Nature. 2009;462:363–367. doi: 10.1038/nature08559. PubMed DOI PMC
Harris CR, Silhavy TJ. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. Journal of Bacteriology. 1999;181:3438–3444. PubMed PMC
Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell. 1990;63:269–279. doi: 10.1016/0092-8674(90)90160-G. PubMed DOI
Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Structure of the SecY complex unlocked by a preprotein mimic. Cell Reports. 2012;1:21–28. doi: 10.1016/j.celrep.2011.11.003. PubMed DOI PMC
Hoffmann A, Nettels D, Clark J, Borgia A, Radford SE, Clarke J, Schuler B. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP) Physical Chemistry Chemical Physics. 2011;13:1857–1871. doi: 10.1039/c0cp01911a. PubMed DOI PMC
Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments. Biophysical Journal. 2016a;110:26–33. doi: 10.1016/j.bpj.2015.11.013. PubMed DOI PMC
Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET. PLoS One. 2016b;11:e0160716. doi: 10.1371/journal.pone.0160716. PubMed DOI PMC
Jenkins RH, Tuma R, Juuti JT, Bamford DH, Thomas GJ. A novel Raman spectrophotometric method for quantitative measurement of nucleoside triphosphate hydrolysis. Biospectroscopy. 1999;5:3–8. doi: 10.1002/(SICI)1520-6343(1999)5:1<3::AID-BSPY2>3.0.CO;2-1. PubMed DOI
Jomaa A, Boehringer D, Leibundgut M, Ban N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nature Communications. 2016;7:10471. doi: 10.1038/ncomms10471. PubMed DOI PMC
Josefsson LG, Randall LL. Different exported proteins in E. coli show differences in the temporal mode of processing in vivo. Cell. 1981;25:151–157. doi: 10.1016/0092-8674(81)90239-7. PubMed DOI
Kumamoto CA, Beckwith J. Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. Journal of Bacteriology. 1983;154:253–260. PubMed PMC
Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophysical Journal. 2005;88:2939–2953. doi: 10.1529/biophysj.104.054114. PubMed DOI PMC
Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature. 2016;531:395–399. doi: 10.1038/nature17163. PubMed DOI PMC
Liang FC, Bageshwar UK, Musser SM. Bacterial sec protein transport is rate-limited by precursor length: a single turnover study. Molecular Biology of the Cell. 2009a;20:4256–4266. doi: 10.1091/mbc.e09-01-0075. PubMed DOI PMC
Liang FC, Bageshwar UK, Musser SM. Bacterial sec protein transport is rate-limited by precursor length: a single turnover study. Molecular Biology of the Cell. 2009b;20:4256–4266. doi: 10.1091/mbc.e09-01-0075. PubMed DOI PMC
Lill R, Cunningham K, Brundage LA, Ito K, Oliver D, Wickner W. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. The EMBO journal. 1989;8:961–966. PubMed PMC
McKnight CJ, Stradley SJ, Jones JD, Gierasch LM. Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region. PNAS. 1991;88:5799–5803. doi: 10.1073/pnas.88.13.5799. PubMed DOI PMC
Michalet X, Colyer RA, Scalia G, Ingargiola A, Lin R, Millaud JE, Weiss S, Siegmund OH, Tremsin AS, Vallerga JV, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni M, Cova S. Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368:20120035. doi: 10.1098/rstb.2012.0035. PubMed DOI PMC
Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D, Kovchegov Y, Weiss S. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. The Journal of Physical Chemistry B. 2006;110:22103–22124. doi: 10.1021/jp063483n. PubMed DOI PMC
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in python. Journal of Machine Learning Research. 2011;12:2825–2830.
Preus S, Noer SL, Hildebrandt LL, Gudnason D, Birkedal V. iSMS: single-molecule FRET microscopy software. Nature Methods. 2015;12:593–594. doi: 10.1038/nmeth.3435. PubMed DOI
Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Computer Physics Communications. 1982;27:213–227. doi: 10.1016/0010-4655(82)90173-4. DOI
Robson A, Carr B, Sessions RB, Collinson I. Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex. FEBS Letters. 2009a;583:207–212. doi: 10.1016/j.febslet.2008.12.003. PubMed DOI
Robson A, Gold VA, Hodson S, Clarke AR, Collinson I. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. PNAS. 2009b;106:5111–5116. doi: 10.1073/pnas.0809592106. PubMed DOI PMC
Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S, Rapoport TA, Pohl P. Determining the conductance of the SecY protein translocation channel for small molecules. Molecular Cell. 2007;26:501–509. doi: 10.1016/j.molcel.2007.03.022. PubMed DOI
Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE. Skp is a multivalent chaperone of outer-membrane proteins. Nature Structural & Molecular Biology. 2016;23:786–793. doi: 10.1038/nsmb.3266. PubMed DOI PMC
Scott DW. Multivariate Density Estimation: Theory, Practice, and Visualization. Chicester: John Wiley & Sons; 1992. DOI
Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Research. 2014;42:5177–5190. doi: 10.1093/nar/gku146. PubMed DOI PMC
Tam PC, Maillard AP, Chan KK, Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. The EMBO Journal. 2005;24:3380–3388. doi: 10.1038/sj.emboj.7600804. PubMed DOI PMC
Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, Tsukazaki T. Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State. Cell Reports. 2015;13:1561–1568. doi: 10.1016/j.celrep.2015.10.025. PubMed DOI
Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJ. SecA supports a constant rate of preprotein translocation. Journal of Biological Chemistry. 2006;281:15709–15713. doi: 10.1074/jbc.M600205200. PubMed DOI
Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophysical Journal. 2011;100:1568–1577. doi: 10.1016/j.bpj.2011.01.066. PubMed DOI PMC
Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived folding intermediates predominate the targeting-competent secretome. Structure. 2018;26:695–707. doi: 10.1016/j.str.2018.03.006. PubMed DOI
Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. X-ray structure of a protein-conducting channel. Nature. 2004;427:36–44. doi: 10.1038/nature02218. PubMed DOI
van der Wolk JP, de Wit JG, Driessen AJ. The catalytic cycle of the escherichia coli SecA ATPase comprises two distinct preprotein translocation events. The EMBO Journal. 1997;16:7297–7304. doi: 10.1093/emboj/16.24.7297. PubMed DOI PMC
Voorhees RM, Hegde RS. Toward a structural understanding of co-translational protein translocation. Current Opinion in Cell Biology. 2016;41:91–99. doi: 10.1016/j.ceb.2016.04.009. PubMed DOI
Weiss JB, Ray PH, Bassford PJ. Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. PNAS. 1988;85:8978–8982. doi: 10.1073/pnas.85.23.8978. PubMed DOI PMC
Whitehouse S, Gold VA, Robson A, Allen WJ, Sessions RB, Collinson I. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. The Journal of Cell Biology. 2012;199:919–929. doi: 10.1083/jcb.201205191. PubMed DOI PMC
Zimmer J, Nam Y, Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 2008;455:936–943. doi: 10.1038/nature07335. PubMed DOI PMC