Dynamic action of the Sec machinery during initiation, protein translocation and termination

. 2018 Jun 07 ; 7 () : . [epub] 20180607

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29877797

Grantová podpora
BB/M003604/I Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011151/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BBSRC South West Bioscience Doctoral Training Partnership Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I006737/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I008675/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N017307/1 Biotechnology and Biological Sciences Research Council - United Kingdom
104632 Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
BB/N015126/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Protein translocation across cell membranes is a ubiquitous process required for protein secretion and membrane protein insertion. In bacteria, this is mostly mediated by the conserved SecYEG complex, driven through rounds of ATP hydrolysis by the cytoplasmic SecA, and the trans-membrane proton motive force. We have used single molecule techniques to explore SecY pore dynamics on multiple timescales in order to dissect the complex reaction pathway. The results show that SecA, both the signal sequence and mature components of the pre-protein, and ATP hydrolysis each have important and specific roles in channel unlocking, opening and priming for transport. After channel opening, translocation proceeds in two phases: a slow phase independent of substrate length, and a length-dependent transport phase with an intrinsic translocation rate of ~40 amino acids per second for the proOmpA substrate. Broad translocation rate distributions reflect the stochastic nature of polypeptide transport.

Zobrazit více v PubMed

Aitken CE, Marshall RA, Puglisi JD. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical Journal. 2008;94:1826–1835. doi: 10.1529/biophysj.107.117689. PubMed DOI PMC

Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife. 2016;5:e15598. doi: 10.7554/eLife.15598. PubMed DOI PMC

Arkowitz RA, Joly JC, Wickner W. Translocation can drive the unfolding of a preprotein domain. The EMBO journal. 1993;12:243–253. PubMed PMC

Bauer BW, Shemesh T, Chen Y, Rapoport TA. A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell. 2014;157:1416–1429. doi: 10.1016/j.cell.2014.03.063. PubMed DOI PMC

Best RB, Hofmann H, Nettels D, Schuler B. Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophysical Journal. 2015;108:2721–2731. doi: 10.1016/j.bpj.2015.04.038. PubMed DOI PMC

Bieker KL, Phillips GJ, Silhavy TJ. The sec and prl genes of Escherichia coli. Journal of Bioenergetics and Biomembranes. 1990;22:291–310. doi: 10.1007/BF00763169. PubMed DOI

Briggs MS, Cornell DG, Dluhy RA, Gierasch LM. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science. 1986;233:206–208. doi: 10.1126/science.2941862. PubMed DOI

Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 1990;62:649–657. doi: 10.1016/0092-8674(90)90111-Q. PubMed DOI

Cannon KS, Or E, Clemons WM, Shibata Y, Rapoport TA. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. The Journal of Cell Biology. 2005;169:219–225. doi: 10.1083/jcb.200412019. PubMed DOI PMC

Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370:20150025. doi: 10.1098/rstb.2015.0025. PubMed DOI PMC

Cook HA, Kumamoto CA. Overproduction of SecA suppresses the export defect caused by a mutation in the gene encoding the Escherichia coli export chaperone secB. Journal of Bacteriology. 1999;181:3010–3017. PubMed PMC

Corey RA, Allen WJ, Collinson I. Protein translocation: what's the problem? Biochemical Society Transactions. 2016a;44:753–759. doi: 10.1042/BST20160047. PubMed DOI PMC

Corey RA, Allen WJ, Komar J, Masiulis S, Menzies S, Robson A, Collinson I. Unlocking the bacterial SecY translocon. Structure. 2016b;24:518–527. doi: 10.1016/j.str.2016.02.001. PubMed DOI PMC

De Keyzer J, Van Der Does C, Driessen AJ. Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. Journal of Biological Chemistry. 2002;277:46059–46065. doi: 10.1074/jbc.M208449200. PubMed DOI

Deville K, Gold VA, Robson A, Whitehouse S, Sessions RB, Baldwin SA, Radford SE, Collinson I. The oligomeric state and arrangement of the active bacterial translocon. Journal of Biological Chemistry. 2011;286:4659–4669. doi: 10.1074/jbc.M110.175638. PubMed DOI PMC

Eggeling C, Fries JR, Brand L, Günther R, Seidel CA. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. PNAS. 1998;95:1556–1561. doi: 10.1073/pnas.95.4.1556. PubMed DOI PMC

Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M. Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature. 1980;285:82–85. doi: 10.1038/285082a0. PubMed DOI

Erlandson KJ, Or E, Osborne AR, Rapoport TA. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. Journal of Biological Chemistry. 2008;283:15709–15715. doi: 10.1074/jbc.M710356200. PubMed DOI PMC

Flower AM, Osborne RS, Silhavy TJ. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. The EMBO journal. 1995;14:884–893. PubMed PMC

Gold VA, Duong F, Collinson I. Structure and function of the bacterial Sec translocon. Molecular Membrane Biology. 2007;24:387–394. doi: 10.1080/09687680701416570. PubMed DOI

Gopich IV, Szabo A. Single-molecule FRET with diffusion and conformational dynamics. The Journal of Physical Chemistry B. 2007;111:12925–12932. doi: 10.1021/jp075255e. PubMed DOI

Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. Signal peptides are allosteric activators of the protein translocase. Nature. 2009;462:363–367. doi: 10.1038/nature08559. PubMed DOI PMC

Harris CR, Silhavy TJ. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. Journal of Bacteriology. 1999;181:3438–3444. PubMed PMC

Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell. 1990;63:269–279. doi: 10.1016/0092-8674(90)90160-G. PubMed DOI

Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Structure of the SecY complex unlocked by a preprotein mimic. Cell Reports. 2012;1:21–28. doi: 10.1016/j.celrep.2011.11.003. PubMed DOI PMC

Hoffmann A, Nettels D, Clark J, Borgia A, Radford SE, Clarke J, Schuler B. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP) Physical Chemistry Chemical Physics. 2011;13:1857–1871. doi: 10.1039/c0cp01911a. PubMed DOI PMC

Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments. Biophysical Journal. 2016a;110:26–33. doi: 10.1016/j.bpj.2015.11.013. PubMed DOI PMC

Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET. PLoS One. 2016b;11:e0160716. doi: 10.1371/journal.pone.0160716. PubMed DOI PMC

Jenkins RH, Tuma R, Juuti JT, Bamford DH, Thomas GJ. A novel Raman spectrophotometric method for quantitative measurement of nucleoside triphosphate hydrolysis. Biospectroscopy. 1999;5:3–8. doi: 10.1002/(SICI)1520-6343(1999)5:1<3::AID-BSPY2>3.0.CO;2-1. PubMed DOI

Jomaa A, Boehringer D, Leibundgut M, Ban N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nature Communications. 2016;7:10471. doi: 10.1038/ncomms10471. PubMed DOI PMC

Josefsson LG, Randall LL. Different exported proteins in E. coli show differences in the temporal mode of processing in vivo. Cell. 1981;25:151–157. doi: 10.1016/0092-8674(81)90239-7. PubMed DOI

Kumamoto CA, Beckwith J. Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. Journal of Bacteriology. 1983;154:253–260. PubMed PMC

Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophysical Journal. 2005;88:2939–2953. doi: 10.1529/biophysj.104.054114. PubMed DOI PMC

Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature. 2016;531:395–399. doi: 10.1038/nature17163. PubMed DOI PMC

Liang FC, Bageshwar UK, Musser SM. Bacterial sec protein transport is rate-limited by precursor length: a single turnover study. Molecular Biology of the Cell. 2009a;20:4256–4266. doi: 10.1091/mbc.e09-01-0075. PubMed DOI PMC

Liang FC, Bageshwar UK, Musser SM. Bacterial sec protein transport is rate-limited by precursor length: a single turnover study. Molecular Biology of the Cell. 2009b;20:4256–4266. doi: 10.1091/mbc.e09-01-0075. PubMed DOI PMC

Lill R, Cunningham K, Brundage LA, Ito K, Oliver D, Wickner W. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. The EMBO journal. 1989;8:961–966. PubMed PMC

McKnight CJ, Stradley SJ, Jones JD, Gierasch LM. Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region. PNAS. 1991;88:5799–5803. doi: 10.1073/pnas.88.13.5799. PubMed DOI PMC

Michalet X, Colyer RA, Scalia G, Ingargiola A, Lin R, Millaud JE, Weiss S, Siegmund OH, Tremsin AS, Vallerga JV, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni M, Cova S. Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368:20120035. doi: 10.1098/rstb.2012.0035. PubMed DOI PMC

Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D, Kovchegov Y, Weiss S. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. The Journal of Physical Chemistry B. 2006;110:22103–22124. doi: 10.1021/jp063483n. PubMed DOI PMC

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in python. Journal of Machine Learning Research. 2011;12:2825–2830.

Preus S, Noer SL, Hildebrandt LL, Gudnason D, Birkedal V. iSMS: single-molecule FRET microscopy software. Nature Methods. 2015;12:593–594. doi: 10.1038/nmeth.3435. PubMed DOI

Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Computer Physics Communications. 1982;27:213–227. doi: 10.1016/0010-4655(82)90173-4. DOI

Robson A, Carr B, Sessions RB, Collinson I. Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex. FEBS Letters. 2009a;583:207–212. doi: 10.1016/j.febslet.2008.12.003. PubMed DOI

Robson A, Gold VA, Hodson S, Clarke AR, Collinson I. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. PNAS. 2009b;106:5111–5116. doi: 10.1073/pnas.0809592106. PubMed DOI PMC

Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S, Rapoport TA, Pohl P. Determining the conductance of the SecY protein translocation channel for small molecules. Molecular Cell. 2007;26:501–509. doi: 10.1016/j.molcel.2007.03.022. PubMed DOI

Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE. Skp is a multivalent chaperone of outer-membrane proteins. Nature Structural & Molecular Biology. 2016;23:786–793. doi: 10.1038/nsmb.3266. PubMed DOI PMC

Scott DW. Multivariate Density Estimation: Theory, Practice, and Visualization. Chicester: John Wiley & Sons; 1992. DOI

Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Research. 2014;42:5177–5190. doi: 10.1093/nar/gku146. PubMed DOI PMC

Tam PC, Maillard AP, Chan KK, Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. The EMBO Journal. 2005;24:3380–3388. doi: 10.1038/sj.emboj.7600804. PubMed DOI PMC

Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, Tsukazaki T. Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State. Cell Reports. 2015;13:1561–1568. doi: 10.1016/j.celrep.2015.10.025. PubMed DOI

Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJ. SecA supports a constant rate of preprotein translocation. Journal of Biological Chemistry. 2006;281:15709–15713. doi: 10.1074/jbc.M600205200. PubMed DOI

Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophysical Journal. 2011;100:1568–1577. doi: 10.1016/j.bpj.2011.01.066. PubMed DOI PMC

Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived folding intermediates predominate the targeting-competent secretome. Structure. 2018;26:695–707. doi: 10.1016/j.str.2018.03.006. PubMed DOI

Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. X-ray structure of a protein-conducting channel. Nature. 2004;427:36–44. doi: 10.1038/nature02218. PubMed DOI

van der Wolk JP, de Wit JG, Driessen AJ. The catalytic cycle of the escherichia coli SecA ATPase comprises two distinct preprotein translocation events. The EMBO Journal. 1997;16:7297–7304. doi: 10.1093/emboj/16.24.7297. PubMed DOI PMC

Voorhees RM, Hegde RS. Toward a structural understanding of co-translational protein translocation. Current Opinion in Cell Biology. 2016;41:91–99. doi: 10.1016/j.ceb.2016.04.009. PubMed DOI

Weiss JB, Ray PH, Bassford PJ. Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. PNAS. 1988;85:8978–8982. doi: 10.1073/pnas.85.23.8978. PubMed DOI PMC

Whitehouse S, Gold VA, Robson A, Allen WJ, Sessions RB, Collinson I. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. The Journal of Cell Biology. 2012;199:919–929. doi: 10.1083/jcb.201205191. PubMed DOI PMC

Zimmer J, Nam Y, Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 2008;455:936–943. doi: 10.1038/nature07335. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...