Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients

. 2020 May 01 ; 11 (1) : 2155. [epub] 20200501

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32358557

Grantová podpora
R01 GM102829 NIGMS NIH HHS - United States
BB/P000037/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N007603/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/T000635/1 Biotechnology and Biological Sciences Research Council - United Kingdom
208385/Z/17/Z Wellcome Trust - United Kingdom
BB/N017307/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
BB/M011151/1 Biotechnology and Biological Sciences Research Council - United Kingdom
MR/P018491/1 Medical Research Council - United Kingdom
BB/M012573/1 Biotechnology and Biological Sciences Research Council - United Kingdom
105615/Z/14/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 32358557
PubMed Central PMC7195389
DOI 10.1038/s41467-020-15702-1
PII: 10.1038/s41467-020-15702-1
Knihovny.cz E-zdroje

The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.

Zobrazit více v PubMed

Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353:aac4354. doi: 10.1126/science.aac4354. PubMed DOI

Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 2018;217:51–63. doi: 10.1083/jcb.201709072. PubMed DOI PMC

Burmann BM, Hiller S. Chaperones and chaperone–substrate complexes: dynamic playgrounds for NMR spectroscopists. Prog. Nucl. Mag. Res. Sp. 2015;86–87:41–64. doi: 10.1016/j.pnmrs.2015.02.004. PubMed DOI

Karagöz GE, Rüdiger SGD. Hsp90 interaction with clients. Trends Biochem. Sci. 2015;40:117–125. doi: 10.1016/j.tibs.2014.12.002. PubMed DOI

Thomas AS, Mao S, Elcock AH. Flexibility of the bacterial chaperone trigger factor in microsecond-timescale molecular dynamics simulations. Biophys. J. 2013;105:732–744. doi: 10.1016/j.bpj.2013.06.028. PubMed DOI PMC

Hayer-Hartl M, Bracher A, Hartl FU. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 2016;41:62–76. doi: 10.1016/j.tibs.2015.07.009. PubMed DOI

Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019;20:421–435. doi: 10.1038/s41580-019-0101-y. PubMed DOI

Jayaraj, G. G., Hipp, M. S. & Hartl, F. U. Functional modules of the proteostasis network. Cold Spring Harb. Perspect. Biol. 10.1101/cshperspect.a033951 (2019). PubMed PMC

Quan S, et al. Super Spy variants implicate flexibility in chaperone action. Elife. 2014;3:e01584. doi: 10.7554/eLife.01584. PubMed DOI PMC

Huang C, Rossi P, Saio T, Kalodimos CG. Structural basis for the antifolding activity of a molecular chaperone. Nature. 2016;537:202–206. doi: 10.1038/nature18965. PubMed DOI PMC

Carra S, et al. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperon. 2019;24:295–308. doi: 10.1007/s12192-019-00979-z. PubMed DOI PMC

Suss O, Reichmann D. Protein plasticity underlines activation and function of ATP-independent chaperones. Front Mol Biosci. 2015;2:43. doi: 10.3389/fmolb.2015.00043. PubMed DOI PMC

Sklar JG, Wu T, Kahne D, Silhavy TJ. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 2007;21:2473–2484. doi: 10.1101/gad.1581007. PubMed DOI PMC

Bennion D, Charlson ES, Coon E, Misra R. Dissection of beta-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol. 2010;77:1153–1171. doi: 10.1111/j.1365-2958.2010.07280.x. PubMed DOI PMC

Lazaar S, Kolter R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 1996;178:1770–1773. doi: 10.1128/JB.178.6.1770-1773.1996. PubMed DOI PMC

Ureta AR, Endres RG, Wingreen NS, Silhavy TJ. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J. Bacteriol. 2007;189:446–454. doi: 10.1128/JB.01103-06. PubMed DOI PMC

Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet JF. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics. 2009;9:2432–2443. doi: 10.1002/pmic.200800794. PubMed DOI PMC

Rizzitello AE, Harper JR, Silhavy TJ. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 2001;183:6794–6800. doi: 10.1128/JB.183.23.6794-6800.2001. PubMed DOI PMC

Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J. Biol. Chem. 2005;280:23540–23548. doi: 10.1074/jbc.M413742200. PubMed DOI

Vuong P, Bennion D, Mantei J, Frost D, Misra R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 2008;190:1507–1517. doi: 10.1128/JB.01477-07. PubMed DOI PMC

Gunasinghe SD, et al. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep. 2018;23:2782–2794. doi: 10.1016/j.celrep.2018.04.093. PubMed DOI

Justice SS, et al. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 2005;187:7680–7686. doi: 10.1128/JB.187.22.7680-7686.2005. PubMed DOI PMC

Rouviere PE, Gross CA. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 1996;10:3170–3182. doi: 10.1101/gad.10.24.3170. PubMed DOI

Behrens S, Maier R, Cock H, Schmid F, Gross C. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 2001;20:285–294. doi: 10.1093/emboj/20.1.285. PubMed DOI PMC

Palomino C, Marin E, Fernandez LA. The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. J. Bacteriol. 2011;193:5222–5230. doi: 10.1128/JB.05585-11. PubMed DOI PMC

Obi IR, Francis MS. Demarcating SurA activities required for outer membrane targeting of Yersinia psueudotuberculosis adhesins. Infect. Immun. 2013;81:2296–2308. doi: 10.1128/IAI.01208-12. PubMed DOI PMC

Bitto E, McKay DB. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure. 2002;10:1489–1498. doi: 10.1016/S0969-2126(02)00877-8. PubMed DOI

Humes JR, et al. The role of SurA PPIase domains in preventing aggregation of the outer membrane proteins tOmpA and OmpT. J. Mol. Biol. 2019;431:1267–1283. doi: 10.1016/j.jmb.2019.01.032. PubMed DOI

Soltes GR, Schwalm J, Ricci DP, Silhavy TJ. The activity of Escherichia coli chaperone SurA is regulated by conformational changes involving a parvulin domain. J. Bacteriol. 2016;198:921–929. doi: 10.1128/JB.00889-15. PubMed DOI PMC

Holding AN. XL-MS: protein cross-linking coupled with mass spectrometry. Methods. 2015;89:54–63. doi: 10.1016/j.ymeth.2015.06.010. PubMed DOI

Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A. Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal. Chem. 2010;82:6958–6968. doi: 10.1021/ac101241t. PubMed DOI

Marx, D. C. et al. SurA is a “Groove-y” chaperone that expands unfolded outer membrane proteins. Preprint at https://www.biorxiv.org/content/10.1101/2019.12.17.878660v1 (2019). PubMed DOI PMC

Li G, et al. Single-molecule detection reveals different roles of Skp and SurA as chaperones. ACS Chem. Biol. 2018;13:1082–1089. doi: 10.1021/acschembio.8b00097. PubMed DOI

Merkley ED, et al. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances. Protein Sci. 2014;23:747–759. doi: 10.1002/pro.2458. PubMed DOI PMC

Bullock MA, Schwab J, Thalassinos K, Topf M. The importance of non-accessible crosslinks and solvent accessible surface distance in modeling proteins with restraints from crosslinking mass spectrometry. Mol. Cell Proteomics. 2016;15:2491–2500. doi: 10.1074/mcp.M116.058560. PubMed DOI PMC

Sinz A. Cross-linking/mass spectrometry for studying protein structures and protein–protein interactions: where are we now and where should we go from here? Angew. Chem. Int. Ed. 2018;57:6390–6396. doi: 10.1002/anie.201709559. PubMed DOI

Degiacomi MT, Schmidt C, Baldwin AJ, Benesch JLP. Accommodating protein dynamics in the modeling of chemical crosslinks. Structure. 2017;25:1751–1757. doi: 10.1016/j.str.2017.08.015. PubMed DOI

Lerner E, et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science. 2018;359:eaan1133. doi: 10.1126/science.aan1133. PubMed DOI PMC

Kalinin S, et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Methods. 2012;9:1218–1225. doi: 10.1038/nmeth.2222. PubMed DOI

Sindbert S, et al. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 2011;133:2463–2480. doi: 10.1021/ja105725e. PubMed DOI

Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophys. J. 2011;100:1568–1577. doi: 10.1016/j.bpj.2011.01.066. PubMed DOI PMC

Burmann BM, Hiller S. Solution NMR studies of membrane-protein-chaperone complexes. Chimia. 2012;66:759–763. doi: 10.2533/chimia.2012.759. PubMed DOI

Burmann BM, Wang C, Hiller S. Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp. Nat. Struct. Mol. Biol. 2013;20:1265–1272. doi: 10.1038/nsmb.2677. PubMed DOI

Thoma J, Burmann BM, Hiller S, Muller DJ. Impact of holdase chaperones Skp and SurA on the folding of beta-barrel outer-membrane proteins. Nat. Struct. Mol. Biol. 2015;22:795–802. doi: 10.1038/nsmb.3087. PubMed DOI

Bitto E, McKay DB. Binding of phage-display-selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins. FEBS Lett. 2004;568:94–98. doi: 10.1016/j.febslet.2004.05.014. PubMed DOI

Schiffrin B, et al. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J. Mol. Biol. 2017;429:3776–3792. doi: 10.1016/j.jmb.2017.09.008. PubMed DOI PMC

Admasu A, et al. A laser flash photolysis study of p-tolyl(trifluoromethyl)carbene. J Chem. Soc., Perkin Trans. 1998;2:1093–1099. doi: 10.1039/a707586c. DOI

Horne JE, et al. Rapid mapping of protein interactions using tag-transfer photocrosslinkers. Angew. Chem. Int. Ed. Engl. 2018;57:16688–16692. doi: 10.1002/anie.201809149. PubMed DOI PMC

Ebie Tan A, Burgess NK, DeAndrade DS, Marold JD, Fleming KG. Self-association of unfolded outer membrane proteins. Macromol. Biosci. 2010;10:763–767. doi: 10.1002/mabi.200900479. PubMed DOI PMC

McMorran LM, Bartlett AI, Huysmans GH, Radford SE, Brockwell DJ. Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J. Mol. Biol. 2013;425:3178–3191. doi: 10.1016/j.jmb.2013.06.017. PubMed DOI PMC

Bitto E, McKay DB. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 2003;278:49316–49322. doi: 10.1074/jbc.M308853200. PubMed DOI

Xu X, Wang S, Hu YX, McKay DB. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J. Mol. Biol. 2007;373:367–381. doi: 10.1016/j.jmb.2007.07.069. PubMed DOI PMC

Behrens-Kneip S. The role of SurA factor in outer membrane protein transport and virulence. Int. J. Med. Microbiol. 2010;300:421–428. doi: 10.1016/j.ijmm.2010.04.012. PubMed DOI

Mas G, Hiller S. Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding. FEMS Microbiol. Lett. 2018;365:fny121. doi: 10.1093/femsle/fny121. PubMed DOI

Weinhäupl K, et al. Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell. 2018;175:1365–1379.e1325. doi: 10.1016/j.cell.2018.10.039. PubMed DOI PMC

Morgado L, Burmann BM, Sharpe T, Mazur A, Hiller S. The dynamic dimer structure of the chaperone Trigger Factor. Nat. Commun. 2017;8:1992. doi: 10.1038/s41467-017-02196-7. PubMed DOI PMC

Holdbrook DA, et al. A spring-loaded mechanism governs the clamp-like dynamics of the Skp chaperone. Structure. 2017;25:1079–1088.e1073. doi: 10.1016/j.str.2017.05.018. PubMed DOI

Schiffrin B, et al. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct. Mol. Biol. 2016;23:786–793. doi: 10.1038/nsmb.3266. PubMed DOI PMC

Zaccai NR, et al. Deuterium labeling together with contrast variation small-angle neutron scattering suggests how Skp captures and releases unfolded outer membrane proteins. Methods Enzymol. 2016;566:159–210. doi: 10.1016/bs.mie.2015.06.041. PubMed DOI PMC

Hu K, Galius V, Pervushin K. Structural plasticity of peptidyl−prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR. Biochem. 2006;45:11983–11991. doi: 10.1021/bi0607913. PubMed DOI

Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Oligomerization of a molecular chaperone modulates its activity. Elife. 2018;7:e35731. doi: 10.7554/eLife.35731. PubMed DOI PMC

Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017;18:345–360. doi: 10.1038/nrm.2017.20. PubMed DOI

Tapley TL, et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc. Natl Acad. Sci. USA. 2009;106:5557–5562. doi: 10.1073/pnas.0811811106. PubMed DOI PMC

Ilbert M, et al. The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 2007;14:556–563. doi: 10.1038/nsmb1244. PubMed DOI PMC

Ricci DP, Schwalm J, Gonzales-Cope M, Silhavy TJ. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. MBio. 2013;4:e00540–00513. doi: 10.1128/mBio.00540-13. PubMed DOI PMC

Plummer AM. The Role of Chaperones and Bama in the Outer Membrane Protein Biogenesis Pathway of Escherichia coli. (Johns Hopkins University ((Doctoral dissertation), 2017).

Wang Y, et al. A supercomplex spanning the inner and outer membranes mediates the biogenesis of beta-barrel outer membrane proteins in bacteria. J. Biol. Chem. 2016;291:16720–16729. doi: 10.1074/jbc.M115.710715. PubMed DOI PMC

Alvira, S. et al. Trans-membrane association of the Sec and BAM complexes for bacterial outer-membrane biogenesis. Preprint at https://www.biorxiv.org/content/10.1101/589077v1 (2019). DOI

Watts KM, Hunstad DA. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli. PLoS ONE. 2008;3:e3359. doi: 10.1371/journal.pone.0003359. PubMed DOI PMC

Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science. 2014;344:1250494. doi: 10.1126/science.1250494. PubMed DOI PMC

Stirling PC, Bakhoum SF, Feigl AB, Leroux MR. Convergent evolution of clamp-like binding sites in diverse chaperones. Nat. Struct. Mol. Biol. 2006;13:865–870. doi: 10.1038/nsmb1153. PubMed DOI

Chaturvedi D, Mahalakshmi R. Folding determinants of transmembrane β-barrels using engineered OMP chimeras. Biochemistry. 2018;57:1987–1996. doi: 10.1021/acs.biochem.8b00012. PubMed DOI PMC

Hiller S, Wider G, Imbach LL, Wuthrich K. Interactions with hydrophobic clusters in the urea-unfolded membrane protein OmpX. Angew. Chem. Int. Ed. Engl. 2008;47:977–981. doi: 10.1002/anie.200703367. PubMed DOI

Michalik M, et al. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS ONE. 2017;12:e0182016. doi: 10.1371/journal.pone.0182016. PubMed DOI PMC

McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch. Biochem. Biophys. 2014;564:265–280. doi: 10.1016/j.abb.2014.02.011. PubMed DOI PMC

Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers—unassisted and assisted folding and insertion. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2015;1848:1927–1943. doi: 10.1016/j.bbamem.2015.05.004. PubMed DOI

Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: an open and closed case? Biochim. Biophys. Acta Biomembr. 1862;183062:2020. PubMed PMC

Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol. 2017;15:123. doi: 10.1186/s12915-017-0464-5. PubMed DOI PMC

Fleming KG. Energetics of membrane protein folding. Annu. Rev. Biophys. 2014;43:233–255. doi: 10.1146/annurev-biophys-051013-022926. PubMed DOI

Fleming KG. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos. Trans. R Soc. Lond. B Biol. Sci. 2015;370:20150026. doi: 10.1098/rstb.2015.0026. PubMed DOI PMC

Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc. Natl Acad. Sci. USA. 2013;110:4285–4290. doi: 10.1073/pnas.1212527110. PubMed DOI PMC

Danoff EJ, Fleming KG. The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane beta-barrel. Biophys. Chem. 2011;159:194–204. doi: 10.1016/j.bpc.2011.06.013. PubMed DOI PMC

Struyve M, Moons M, Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 1991;218:141–148. doi: 10.1016/0022-2836(91)90880-F. PubMed DOI

de Cock H, Struyve M, Kleerebezem M, van der Krift T, Tommassen J. Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. J. Mol. Biol. 1997;269:473–478. doi: 10.1006/jmbi.1997.1069. PubMed DOI

Konovalova A, et al. Inhibitor of intramembrane protease RseP blocks the σE response causing lethal accumulation of unfolded outer membrane proteins. Proc. Natl Acad. Sci. USA. 2018;115:E6614–E6621. doi: 10.1073/pnas.1806107115. PubMed DOI PMC

Noinaj N, Gumbart JC, Buchanan SK. The β-barrel assembly machinery in motion. Nat. Rev. Micro. 2017;15:197–204. doi: 10.1038/nrmicro.2016.191. PubMed DOI PMC

Doerner PA, Sousa MC. Extreme dynamics in the bamA β-barrel seam. Biochem. 2017;56:3142–3149. doi: 10.1021/acs.biochem.7b00281. PubMed DOI PMC

Iadanza MG, et al. Lateral opening in the intact beta-barrel assembly machinery captured by cryo-EM. Nat. Commun. 2016;7:12865. doi: 10.1038/ncomms12865. PubMed DOI PMC

Hartmann J-B, Zahn M, Burmann IM, Bibow S, Hiller S. Sequence-specific solution NMR assignments of the β-barrel insertase BamA to monitor its conformational ensemble at the atomic level. J. Am. Chem. Soc. 2018;140:11252–11260. doi: 10.1021/jacs.8b03220. PubMed DOI

Lundquist K, Bakelar J, Noinaj N, Gumbart JC. C-terminal kink formation is required for lateral gating in BamA. Proc. Natl Acad. Sci. USA. 2018;115:E7942–E7949. doi: 10.1073/pnas.1722530115. PubMed DOI PMC

Hagan CL, Kim S, Kahne D. Reconstitution of outer membrane protein assembly from purified components. Science. 2010;328:890–892. doi: 10.1126/science.1188919. PubMed DOI PMC

Iacobucci C, et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc. 2018;13:2864–2889. doi: 10.1038/s41596-018-0068-8. PubMed DOI

Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic. Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Iacobucci C, et al. First community-wide, comparative cross-linking mass spectrometry study. Anal. Chem. 2019;91:6953–6961. doi: 10.1021/acs.analchem.9b00658. PubMed DOI PMC

Sharma A, et al. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic. Acids Res. 2014;42:5177–5190. doi: 10.1093/nar/gku146. PubMed DOI PMC

Lee NK, et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 2005;88:2939–2953. doi: 10.1529/biophysj.104.054114. PubMed DOI PMC

Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: an open file format for timestamp-based single-molecule fluorescence experiments. Biophys. J. 2016;110:26–33. doi: 10.1016/j.bpj.2015.11.013. PubMed DOI PMC

Fessl T, et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination. Elife. 2018;7:e35112. doi: 10.7554/eLife.35112. PubMed DOI PMC

Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X. FRETBursts: an open source toolkit for analysis of freely-diffusing single-molecule FRET. PLoS ONE. 2016;11:e0160716. doi: 10.1371/journal.pone.0160716. PubMed DOI PMC

Hellenkamp B, et al. Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat. Methods. 2018;15:669–676. doi: 10.1038/s41592-018-0085-0. PubMed DOI PMC

Tomov TE, et al. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophys. J. 2012;102:1163–1173. doi: 10.1016/j.bpj.2011.11.4025. PubMed DOI PMC

Hunter JD. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Hagelueken G, Ward R, Naismith JH, Schiemann O. MtsslWizard: in silico spin-labeling and generation of distance distributions in PyMOL. Appl. Magn. Reson. 2012;42:377–391. doi: 10.1007/s00723-012-0314-0. PubMed DOI PMC

Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI

Best RB, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC

Eswar N, et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics. 2006;Chapter 5:5.6.1–5.6.30. doi: 10.1002/0471250953.bi0506s15. PubMed DOI PMC

Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH NMR molecular structure determination package. J. Reson. 2003;160:65–73. doi: 10.1016/S1090-7807(02)00014-9. PubMed DOI

Bermejo GA, Clore GM, Schwieters CD. Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci. 2012;21:1824–1836. doi: 10.1002/pro.2163. PubMed DOI PMC

Lim WK, Rosgen J, Englander SW. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proc. Natl Acad. Sci. USA. 2009;106:2595–2600. doi: 10.1073/pnas.0812588106. PubMed DOI PMC

Cryar A, Groves K, Quaglia M. Online hydrogen-deuterium exchange traveling wave ion mobility mass spectrometry (HDX-IM-MS): a systematic evaluation. J. Am. Soc. Mass Spectrom. 2017;28:1192–1202. doi: 10.1007/s13361-017-1633-z. PubMed DOI PMC

Lau AMC, Ahdash Z, Martens C, Politis A. Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics. 2019;35:3171–3173. doi: 10.1093/bioinformatics/btz022. PubMed DOI PMC

Masson GR, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods. 2019;16:595–602. doi: 10.1038/s41592-019-0459-y. PubMed DOI PMC

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA. 2001;98:10037–10041. doi: 10.1073/pnas.181342398. PubMed DOI PMC

Ashkenazy H, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. doi: 10.1093/nar/gkw408. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dual client binding sites in the ATP-independent chaperone SurA

. 2024 Sep 14 ; 15 (1) : 8071. [epub] 20240914

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...