Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM102829
NIGMS NIH HHS - United States
BB/P000037/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N007603/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/T000635/1
Biotechnology and Biological Sciences Research Council - United Kingdom
208385/Z/17/Z
Wellcome Trust - United Kingdom
BB/N017307/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
BB/M011151/1
Biotechnology and Biological Sciences Research Council - United Kingdom
MR/P018491/1
Medical Research Council - United Kingdom
BB/M012573/1
Biotechnology and Biological Sciences Research Council - United Kingdom
105615/Z/14/Z
Wellcome Trust - United Kingdom
PubMed
32358557
PubMed Central
PMC7195389
DOI
10.1038/s41467-020-15702-1
PII: 10.1038/s41467-020-15702-1
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli metabolismus MeSH
- hmotnostní spektrometrie MeSH
- molekulární chaperony genetika metabolismus MeSH
- peptidylprolylisomerasa genetika metabolismus MeSH
- proteiny vnější bakteriální membrány genetika metabolismus MeSH
- proteiny z Escherichia coli genetika metabolismus MeSH
- transportní proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- molekulární chaperony MeSH
- peptidylprolylisomerasa MeSH
- proteiny vnější bakteriální membrány MeSH
- proteiny z Escherichia coli MeSH
- SurA protein, E coli MeSH Prohlížeč
- transportní proteiny MeSH
The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.
Zobrazit více v PubMed
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353:aac4354. doi: 10.1126/science.aac4354. PubMed DOI
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 2018;217:51–63. doi: 10.1083/jcb.201709072. PubMed DOI PMC
Burmann BM, Hiller S. Chaperones and chaperone–substrate complexes: dynamic playgrounds for NMR spectroscopists. Prog. Nucl. Mag. Res. Sp. 2015;86–87:41–64. doi: 10.1016/j.pnmrs.2015.02.004. PubMed DOI
Karagöz GE, Rüdiger SGD. Hsp90 interaction with clients. Trends Biochem. Sci. 2015;40:117–125. doi: 10.1016/j.tibs.2014.12.002. PubMed DOI
Thomas AS, Mao S, Elcock AH. Flexibility of the bacterial chaperone trigger factor in microsecond-timescale molecular dynamics simulations. Biophys. J. 2013;105:732–744. doi: 10.1016/j.bpj.2013.06.028. PubMed DOI PMC
Hayer-Hartl M, Bracher A, Hartl FU. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 2016;41:62–76. doi: 10.1016/j.tibs.2015.07.009. PubMed DOI
Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019;20:421–435. doi: 10.1038/s41580-019-0101-y. PubMed DOI
Jayaraj, G. G., Hipp, M. S. & Hartl, F. U. Functional modules of the proteostasis network. Cold Spring Harb. Perspect. Biol. 10.1101/cshperspect.a033951 (2019). PubMed PMC
Quan S, et al. Super Spy variants implicate flexibility in chaperone action. Elife. 2014;3:e01584. doi: 10.7554/eLife.01584. PubMed DOI PMC
Huang C, Rossi P, Saio T, Kalodimos CG. Structural basis for the antifolding activity of a molecular chaperone. Nature. 2016;537:202–206. doi: 10.1038/nature18965. PubMed DOI PMC
Carra S, et al. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperon. 2019;24:295–308. doi: 10.1007/s12192-019-00979-z. PubMed DOI PMC
Suss O, Reichmann D. Protein plasticity underlines activation and function of ATP-independent chaperones. Front Mol Biosci. 2015;2:43. doi: 10.3389/fmolb.2015.00043. PubMed DOI PMC
Sklar JG, Wu T, Kahne D, Silhavy TJ. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 2007;21:2473–2484. doi: 10.1101/gad.1581007. PubMed DOI PMC
Bennion D, Charlson ES, Coon E, Misra R. Dissection of beta-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol. 2010;77:1153–1171. doi: 10.1111/j.1365-2958.2010.07280.x. PubMed DOI PMC
Lazaar S, Kolter R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 1996;178:1770–1773. doi: 10.1128/JB.178.6.1770-1773.1996. PubMed DOI PMC
Ureta AR, Endres RG, Wingreen NS, Silhavy TJ. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J. Bacteriol. 2007;189:446–454. doi: 10.1128/JB.01103-06. PubMed DOI PMC
Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet JF. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics. 2009;9:2432–2443. doi: 10.1002/pmic.200800794. PubMed DOI PMC
Rizzitello AE, Harper JR, Silhavy TJ. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 2001;183:6794–6800. doi: 10.1128/JB.183.23.6794-6800.2001. PubMed DOI PMC
Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J. Biol. Chem. 2005;280:23540–23548. doi: 10.1074/jbc.M413742200. PubMed DOI
Vuong P, Bennion D, Mantei J, Frost D, Misra R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 2008;190:1507–1517. doi: 10.1128/JB.01477-07. PubMed DOI PMC
Gunasinghe SD, et al. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep. 2018;23:2782–2794. doi: 10.1016/j.celrep.2018.04.093. PubMed DOI
Justice SS, et al. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 2005;187:7680–7686. doi: 10.1128/JB.187.22.7680-7686.2005. PubMed DOI PMC
Rouviere PE, Gross CA. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 1996;10:3170–3182. doi: 10.1101/gad.10.24.3170. PubMed DOI
Behrens S, Maier R, Cock H, Schmid F, Gross C. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 2001;20:285–294. doi: 10.1093/emboj/20.1.285. PubMed DOI PMC
Palomino C, Marin E, Fernandez LA. The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. J. Bacteriol. 2011;193:5222–5230. doi: 10.1128/JB.05585-11. PubMed DOI PMC
Obi IR, Francis MS. Demarcating SurA activities required for outer membrane targeting of Yersinia psueudotuberculosis adhesins. Infect. Immun. 2013;81:2296–2308. doi: 10.1128/IAI.01208-12. PubMed DOI PMC
Bitto E, McKay DB. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure. 2002;10:1489–1498. doi: 10.1016/S0969-2126(02)00877-8. PubMed DOI
Humes JR, et al. The role of SurA PPIase domains in preventing aggregation of the outer membrane proteins tOmpA and OmpT. J. Mol. Biol. 2019;431:1267–1283. doi: 10.1016/j.jmb.2019.01.032. PubMed DOI
Soltes GR, Schwalm J, Ricci DP, Silhavy TJ. The activity of Escherichia coli chaperone SurA is regulated by conformational changes involving a parvulin domain. J. Bacteriol. 2016;198:921–929. doi: 10.1128/JB.00889-15. PubMed DOI PMC
Holding AN. XL-MS: protein cross-linking coupled with mass spectrometry. Methods. 2015;89:54–63. doi: 10.1016/j.ymeth.2015.06.010. PubMed DOI
Müller MQ, Dreiocker F, Ihling CH, Schäfer M, Sinz A. Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal. Chem. 2010;82:6958–6968. doi: 10.1021/ac101241t. PubMed DOI
Marx, D. C. et al. SurA is a “Groove-y” chaperone that expands unfolded outer membrane proteins. Preprint at https://www.biorxiv.org/content/10.1101/2019.12.17.878660v1 (2019). PubMed DOI PMC
Li G, et al. Single-molecule detection reveals different roles of Skp and SurA as chaperones. ACS Chem. Biol. 2018;13:1082–1089. doi: 10.1021/acschembio.8b00097. PubMed DOI
Merkley ED, et al. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances. Protein Sci. 2014;23:747–759. doi: 10.1002/pro.2458. PubMed DOI PMC
Bullock MA, Schwab J, Thalassinos K, Topf M. The importance of non-accessible crosslinks and solvent accessible surface distance in modeling proteins with restraints from crosslinking mass spectrometry. Mol. Cell Proteomics. 2016;15:2491–2500. doi: 10.1074/mcp.M116.058560. PubMed DOI PMC
Sinz A. Cross-linking/mass spectrometry for studying protein structures and protein–protein interactions: where are we now and where should we go from here? Angew. Chem. Int. Ed. 2018;57:6390–6396. doi: 10.1002/anie.201709559. PubMed DOI
Degiacomi MT, Schmidt C, Baldwin AJ, Benesch JLP. Accommodating protein dynamics in the modeling of chemical crosslinks. Structure. 2017;25:1751–1757. doi: 10.1016/j.str.2017.08.015. PubMed DOI
Lerner E, et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science. 2018;359:eaan1133. doi: 10.1126/science.aan1133. PubMed DOI PMC
Kalinin S, et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Methods. 2012;9:1218–1225. doi: 10.1038/nmeth.2222. PubMed DOI
Sindbert S, et al. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 2011;133:2463–2480. doi: 10.1021/ja105725e. PubMed DOI
Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophys. J. 2011;100:1568–1577. doi: 10.1016/j.bpj.2011.01.066. PubMed DOI PMC
Burmann BM, Hiller S. Solution NMR studies of membrane-protein-chaperone complexes. Chimia. 2012;66:759–763. doi: 10.2533/chimia.2012.759. PubMed DOI
Burmann BM, Wang C, Hiller S. Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp. Nat. Struct. Mol. Biol. 2013;20:1265–1272. doi: 10.1038/nsmb.2677. PubMed DOI
Thoma J, Burmann BM, Hiller S, Muller DJ. Impact of holdase chaperones Skp and SurA on the folding of beta-barrel outer-membrane proteins. Nat. Struct. Mol. Biol. 2015;22:795–802. doi: 10.1038/nsmb.3087. PubMed DOI
Bitto E, McKay DB. Binding of phage-display-selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins. FEBS Lett. 2004;568:94–98. doi: 10.1016/j.febslet.2004.05.014. PubMed DOI
Schiffrin B, et al. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J. Mol. Biol. 2017;429:3776–3792. doi: 10.1016/j.jmb.2017.09.008. PubMed DOI PMC
Admasu A, et al. A laser flash photolysis study of p-tolyl(trifluoromethyl)carbene. J Chem. Soc., Perkin Trans. 1998;2:1093–1099. doi: 10.1039/a707586c. DOI
Horne JE, et al. Rapid mapping of protein interactions using tag-transfer photocrosslinkers. Angew. Chem. Int. Ed. Engl. 2018;57:16688–16692. doi: 10.1002/anie.201809149. PubMed DOI PMC
Ebie Tan A, Burgess NK, DeAndrade DS, Marold JD, Fleming KG. Self-association of unfolded outer membrane proteins. Macromol. Biosci. 2010;10:763–767. doi: 10.1002/mabi.200900479. PubMed DOI PMC
McMorran LM, Bartlett AI, Huysmans GH, Radford SE, Brockwell DJ. Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J. Mol. Biol. 2013;425:3178–3191. doi: 10.1016/j.jmb.2013.06.017. PubMed DOI PMC
Bitto E, McKay DB. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 2003;278:49316–49322. doi: 10.1074/jbc.M308853200. PubMed DOI
Xu X, Wang S, Hu YX, McKay DB. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J. Mol. Biol. 2007;373:367–381. doi: 10.1016/j.jmb.2007.07.069. PubMed DOI PMC
Behrens-Kneip S. The role of SurA factor in outer membrane protein transport and virulence. Int. J. Med. Microbiol. 2010;300:421–428. doi: 10.1016/j.ijmm.2010.04.012. PubMed DOI
Mas G, Hiller S. Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding. FEMS Microbiol. Lett. 2018;365:fny121. doi: 10.1093/femsle/fny121. PubMed DOI
Weinhäupl K, et al. Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell. 2018;175:1365–1379.e1325. doi: 10.1016/j.cell.2018.10.039. PubMed DOI PMC
Morgado L, Burmann BM, Sharpe T, Mazur A, Hiller S. The dynamic dimer structure of the chaperone Trigger Factor. Nat. Commun. 2017;8:1992. doi: 10.1038/s41467-017-02196-7. PubMed DOI PMC
Holdbrook DA, et al. A spring-loaded mechanism governs the clamp-like dynamics of the Skp chaperone. Structure. 2017;25:1079–1088.e1073. doi: 10.1016/j.str.2017.05.018. PubMed DOI
Schiffrin B, et al. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct. Mol. Biol. 2016;23:786–793. doi: 10.1038/nsmb.3266. PubMed DOI PMC
Zaccai NR, et al. Deuterium labeling together with contrast variation small-angle neutron scattering suggests how Skp captures and releases unfolded outer membrane proteins. Methods Enzymol. 2016;566:159–210. doi: 10.1016/bs.mie.2015.06.041. PubMed DOI PMC
Hu K, Galius V, Pervushin K. Structural plasticity of peptidyl−prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR. Biochem. 2006;45:11983–11991. doi: 10.1021/bi0607913. PubMed DOI
Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Oligomerization of a molecular chaperone modulates its activity. Elife. 2018;7:e35731. doi: 10.7554/eLife.35731. PubMed DOI PMC
Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017;18:345–360. doi: 10.1038/nrm.2017.20. PubMed DOI
Tapley TL, et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc. Natl Acad. Sci. USA. 2009;106:5557–5562. doi: 10.1073/pnas.0811811106. PubMed DOI PMC
Ilbert M, et al. The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 2007;14:556–563. doi: 10.1038/nsmb1244. PubMed DOI PMC
Ricci DP, Schwalm J, Gonzales-Cope M, Silhavy TJ. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. MBio. 2013;4:e00540–00513. doi: 10.1128/mBio.00540-13. PubMed DOI PMC
Plummer AM. The Role of Chaperones and Bama in the Outer Membrane Protein Biogenesis Pathway of Escherichia coli. (Johns Hopkins University ((Doctoral dissertation), 2017).
Wang Y, et al. A supercomplex spanning the inner and outer membranes mediates the biogenesis of beta-barrel outer membrane proteins in bacteria. J. Biol. Chem. 2016;291:16720–16729. doi: 10.1074/jbc.M115.710715. PubMed DOI PMC
Alvira, S. et al. Trans-membrane association of the Sec and BAM complexes for bacterial outer-membrane biogenesis. Preprint at https://www.biorxiv.org/content/10.1101/589077v1 (2019). DOI
Watts KM, Hunstad DA. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli. PLoS ONE. 2008;3:e3359. doi: 10.1371/journal.pone.0003359. PubMed DOI PMC
Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science. 2014;344:1250494. doi: 10.1126/science.1250494. PubMed DOI PMC
Stirling PC, Bakhoum SF, Feigl AB, Leroux MR. Convergent evolution of clamp-like binding sites in diverse chaperones. Nat. Struct. Mol. Biol. 2006;13:865–870. doi: 10.1038/nsmb1153. PubMed DOI
Chaturvedi D, Mahalakshmi R. Folding determinants of transmembrane β-barrels using engineered OMP chimeras. Biochemistry. 2018;57:1987–1996. doi: 10.1021/acs.biochem.8b00012. PubMed DOI PMC
Hiller S, Wider G, Imbach LL, Wuthrich K. Interactions with hydrophobic clusters in the urea-unfolded membrane protein OmpX. Angew. Chem. Int. Ed. Engl. 2008;47:977–981. doi: 10.1002/anie.200703367. PubMed DOI
Michalik M, et al. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS ONE. 2017;12:e0182016. doi: 10.1371/journal.pone.0182016. PubMed DOI PMC
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch. Biochem. Biophys. 2014;564:265–280. doi: 10.1016/j.abb.2014.02.011. PubMed DOI PMC
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers—unassisted and assisted folding and insertion. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2015;1848:1927–1943. doi: 10.1016/j.bbamem.2015.05.004. PubMed DOI
Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: an open and closed case? Biochim. Biophys. Acta Biomembr. 1862;183062:2020. PubMed PMC
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol. 2017;15:123. doi: 10.1186/s12915-017-0464-5. PubMed DOI PMC
Fleming KG. Energetics of membrane protein folding. Annu. Rev. Biophys. 2014;43:233–255. doi: 10.1146/annurev-biophys-051013-022926. PubMed DOI
Fleming KG. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos. Trans. R Soc. Lond. B Biol. Sci. 2015;370:20150026. doi: 10.1098/rstb.2015.0026. PubMed DOI PMC
Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc. Natl Acad. Sci. USA. 2013;110:4285–4290. doi: 10.1073/pnas.1212527110. PubMed DOI PMC
Danoff EJ, Fleming KG. The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane beta-barrel. Biophys. Chem. 2011;159:194–204. doi: 10.1016/j.bpc.2011.06.013. PubMed DOI PMC
Struyve M, Moons M, Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 1991;218:141–148. doi: 10.1016/0022-2836(91)90880-F. PubMed DOI
de Cock H, Struyve M, Kleerebezem M, van der Krift T, Tommassen J. Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. J. Mol. Biol. 1997;269:473–478. doi: 10.1006/jmbi.1997.1069. PubMed DOI
Konovalova A, et al. Inhibitor of intramembrane protease RseP blocks the σE response causing lethal accumulation of unfolded outer membrane proteins. Proc. Natl Acad. Sci. USA. 2018;115:E6614–E6621. doi: 10.1073/pnas.1806107115. PubMed DOI PMC
Noinaj N, Gumbart JC, Buchanan SK. The β-barrel assembly machinery in motion. Nat. Rev. Micro. 2017;15:197–204. doi: 10.1038/nrmicro.2016.191. PubMed DOI PMC
Doerner PA, Sousa MC. Extreme dynamics in the bamA β-barrel seam. Biochem. 2017;56:3142–3149. doi: 10.1021/acs.biochem.7b00281. PubMed DOI PMC
Iadanza MG, et al. Lateral opening in the intact beta-barrel assembly machinery captured by cryo-EM. Nat. Commun. 2016;7:12865. doi: 10.1038/ncomms12865. PubMed DOI PMC
Hartmann J-B, Zahn M, Burmann IM, Bibow S, Hiller S. Sequence-specific solution NMR assignments of the β-barrel insertase BamA to monitor its conformational ensemble at the atomic level. J. Am. Chem. Soc. 2018;140:11252–11260. doi: 10.1021/jacs.8b03220. PubMed DOI
Lundquist K, Bakelar J, Noinaj N, Gumbart JC. C-terminal kink formation is required for lateral gating in BamA. Proc. Natl Acad. Sci. USA. 2018;115:E7942–E7949. doi: 10.1073/pnas.1722530115. PubMed DOI PMC
Hagan CL, Kim S, Kahne D. Reconstitution of outer membrane protein assembly from purified components. Science. 2010;328:890–892. doi: 10.1126/science.1188919. PubMed DOI PMC
Iacobucci C, et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc. 2018;13:2864–2889. doi: 10.1038/s41596-018-0068-8. PubMed DOI
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic. Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Iacobucci C, et al. First community-wide, comparative cross-linking mass spectrometry study. Anal. Chem. 2019;91:6953–6961. doi: 10.1021/acs.analchem.9b00658. PubMed DOI PMC
Sharma A, et al. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic. Acids Res. 2014;42:5177–5190. doi: 10.1093/nar/gku146. PubMed DOI PMC
Lee NK, et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 2005;88:2939–2953. doi: 10.1529/biophysj.104.054114. PubMed DOI PMC
Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: an open file format for timestamp-based single-molecule fluorescence experiments. Biophys. J. 2016;110:26–33. doi: 10.1016/j.bpj.2015.11.013. PubMed DOI PMC
Fessl T, et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination. Elife. 2018;7:e35112. doi: 10.7554/eLife.35112. PubMed DOI PMC
Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X. FRETBursts: an open source toolkit for analysis of freely-diffusing single-molecule FRET. PLoS ONE. 2016;11:e0160716. doi: 10.1371/journal.pone.0160716. PubMed DOI PMC
Hellenkamp B, et al. Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat. Methods. 2018;15:669–676. doi: 10.1038/s41592-018-0085-0. PubMed DOI PMC
Tomov TE, et al. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophys. J. 2012;102:1163–1173. doi: 10.1016/j.bpj.2011.11.4025. PubMed DOI PMC
Hunter JD. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Hagelueken G, Ward R, Naismith JH, Schiemann O. MtsslWizard: in silico spin-labeling and generation of distance distributions in PyMOL. Appl. Magn. Reson. 2012;42:377–391. doi: 10.1007/s00723-012-0314-0. PubMed DOI PMC
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI
Best RB, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC
Eswar N, et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics. 2006;Chapter 5:5.6.1–5.6.30. doi: 10.1002/0471250953.bi0506s15. PubMed DOI PMC
Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH NMR molecular structure determination package. J. Reson. 2003;160:65–73. doi: 10.1016/S1090-7807(02)00014-9. PubMed DOI
Bermejo GA, Clore GM, Schwieters CD. Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci. 2012;21:1824–1836. doi: 10.1002/pro.2163. PubMed DOI PMC
Lim WK, Rosgen J, Englander SW. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proc. Natl Acad. Sci. USA. 2009;106:2595–2600. doi: 10.1073/pnas.0812588106. PubMed DOI PMC
Cryar A, Groves K, Quaglia M. Online hydrogen-deuterium exchange traveling wave ion mobility mass spectrometry (HDX-IM-MS): a systematic evaluation. J. Am. Soc. Mass Spectrom. 2017;28:1192–1202. doi: 10.1007/s13361-017-1633-z. PubMed DOI PMC
Lau AMC, Ahdash Z, Martens C, Politis A. Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics. 2019;35:3171–3173. doi: 10.1093/bioinformatics/btz022. PubMed DOI PMC
Masson GR, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods. 2019;16:595–602. doi: 10.1038/s41592-019-0459-y. PubMed DOI PMC
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA. 2001;98:10037–10041. doi: 10.1073/pnas.181342398. PubMed DOI PMC
Ashkenazy H, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. doi: 10.1093/nar/gkw408. PubMed DOI PMC