Role of Conserved Residues and F322 in the Extracellular Vestibule of the Rat P2X7 Receptor in Its Expression, Function and Dye Uptake Ability
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-05413S
The Czech Science Foundation
LQ1604
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33182845
PubMed Central
PMC7696158
DOI
10.3390/ijms21228446
PII: ijms21228446
Knihovny.cz E-zdroje
- Klíčová slova
- HEK293T cells, P2X7 receptor, deactivation, dye uptake, extracellular vestibule, gating, mutagenesis,
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- gating iontového kanálu MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- kinetika MeSH
- konzervovaná sekvence MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- luminescentní proteiny chemie genetika metabolismus MeSH
- molekulární modely MeSH
- mutageneze cílená MeSH
- mutantní proteiny chemie genetika metabolismus MeSH
- proteinové domény MeSH
- purinergní receptory P2X7 chemie genetika metabolismus MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- statická elektřina MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- luminescentní proteiny MeSH
- mutantní proteiny MeSH
- P2rx7 protein, rat MeSH Prohlížeč
- purinergní receptory P2X7 MeSH
- rekombinantní fúzní proteiny MeSH
- yellow fluorescent protein, Bacteria MeSH Prohlížeč
Activation of the P2X7 receptor results in the opening of a large pore that plays a role in immune responses, apoptosis, and many other physiological and pathological processes. Here, we investigated the role of conserved and unique residues in the extracellular vestibule connecting the agonist-binding domain with the transmembrane domain of rat P2X7 receptor. We found that all residues that are conserved among the P2X receptor subtypes respond to alanine mutagenesis with an inhibition (Y51, Q52, and G323) or a significant decrease (K49, G326, K327, and F328) of 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP)-induced current and permeability to ethidium bromide, while the nonconserved residue (F322), which is also present in P2X4 receptor, responds with a 10-fold higher sensitivity to BzATP, much slower deactivation kinetics, and a higher propensity to form the large dye-permeable pore. We examined the membrane expression of conserved mutants and found that Y51, Q52, G323, and F328 play a role in the trafficking of the receptor to the plasma membrane, while K49 controls receptor responsiveness to agonists. Finally, we studied the importance of the physicochemical properties of these residues and observed that the K49R, F322Y, F322W, and F322L mutants significantly reversed the receptor function, indicating that positively charged and large hydrophobic residues are important at positions 49 and 322, respectively. These results show that clusters of conserved residues above the transmembrane domain 1 (K49-Y51-Q52) and transmembrane domain 2 (G326-K327-F328) are important for receptor structure, membrane expression, and channel gating and that the nonconserved residue (F322) at the top of the extracellular vestibule is involved in hydrophobic inter-subunit interaction which stabilizes the closed state of the P2X7 receptor channel.
1st Faculty of Medicine Charles University 12108 Prague Czech Republic
Centre National de la Recherche Scientifique UMR 5293 F 33000 Bordeaux France
Institute des Maladies Neurodégénératives University de Bordeaux UMR 5293 F 33000 Bordeaux France
Institute of Physiology Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Adinolfi E., Pizzirani C., Idzko M., Panther E., Norgauer J., Di Virgilio F., Ferrari D. P2X(7) receptor: Death or life? Purinergic Signal. 2005;1:219–227. doi: 10.1007/s11302-005-6322-x. PubMed DOI PMC
Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol. Rev. 2006;58:58–86. doi: 10.1124/pr.58.1.5. PubMed DOI
Surprenant A., North R.A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 2009;71:333–359. doi: 10.1146/annurev.physiol.70.113006.100630. PubMed DOI
Stojilkovic S.S. Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol. Metab. 2009;20:460–468. doi: 10.1016/j.tem.2009.05.005. PubMed DOI PMC
Khakh B.S., North R.A. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron. 2012;76:51–69. doi: 10.1016/j.neuron.2012.09.024. PubMed DOI PMC
Coddou C., Yan Z., Obsil T., Huidobro-Toro J.P., Stojilkovic S.S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 2011;63:641–683. doi: 10.1124/pr.110.003129. PubMed DOI PMC
Surprenant A., Rassendren F., Kawashima E., North R.A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7) Science. 1996;272:735–738. doi: 10.1126/science.272.5262.735. PubMed DOI
Rassendren F., Buell G.N., Virginio C., Collo G., North R.A., Surprenant A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem. 1997;272:5482–5486. doi: 10.1074/jbc.272.9.5482. PubMed DOI
Kopp R., Krautloher A., Ramirez-Fernandez A., Nicke A. P2X7 Interactions and Signaling—Making Head or Tail of It. Front. Mol. Neurosci. 2019;12:183. doi: 10.3389/fnmol.2019.00183. PubMed DOI PMC
Di Virgilio F., Dal Ben D., Sarti A.C., Giuliani A.L., Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47:15–31. doi: 10.1016/j.immuni.2017.06.020. PubMed DOI
Vavra V., Bhattacharya A., Zemkova H. Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices. Neuroscience. 2011;188:1–12. doi: 10.1016/j.neuroscience.2011.04.067. PubMed DOI
Illes P., Khan T.M., Rubini P. Neuronal P2X7 Receptors Revisited: Do They Really Exist? J. Neurosci. 2017;37:7049–7062. doi: 10.1523/JNEUROSCI.3103-16.2017. PubMed DOI PMC
Kaczmarek-Hajek K., Zhang J., Kopp R., Grosche A., Rissiek B., Saul A., Bruzzone S., Engel T., Jooss T., Krautloher A., et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. eLife. 2018;7 doi: 10.7554/eLife.36217.001. PubMed DOI PMC
Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal. 2016;12:59–67. doi: 10.1007/s11302-015-9493-0. PubMed DOI PMC
Klaft Z.J., Schulz S.B., Maslarova A., Gabriel S., Heinemann U., Gerevich Z. Extracellular ATP differentially affects epileptiform activity via purinergic P2X7 and adenosine A1 receptors in naive and chronic epileptic rats. Epilepsia. 2012;53:1978–1986. doi: 10.1111/j.1528-1167.2012.03724.x. PubMed DOI
Nurkhametova D., Kudryavtsev I., Guselnikova V., Serebryakova M., Giniatullina R.R., Wojciechowski S., Tore F., Rizvanov A., Koistinaho J., Malm T., et al. Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges. Front. Cell. Neurosci. 2019;13:45. doi: 10.3389/fncel.2019.00045. PubMed DOI PMC
Sperlagh B., Illes P. P2X7 receptor: An emerging target in central nervous system diseases. Trends Pharmacol. Sci. 2014;35:537–547. doi: 10.1016/j.tips.2014.08.002. PubMed DOI
Stokes L., Spencer S.J., Jenkins T.A. Understanding the role of P2X7 in affective disorders-are glial cells the major players? Front. Cell. Neurosci. 2015;9:258. doi: 10.3389/fncel.2015.00258. PubMed DOI PMC
Garre J.M., Silva H.M., Lafaille J.J., Yang G. P2X7 receptor inhibition ameliorates dendritic spine pathology and social behavioral deficits in Rett syndrome mice. Nat. Commun. 2020;11:1784. doi: 10.1038/s41467-020-15590-5. PubMed DOI PMC
Koldej R.M., Perera T., Collins J., Ritchie D.S. Association between P2X7 Polymorphisms and Post-Transplant Outcomes in Allogeneic Haematopoietic Stem Cell Transplantation. Int. J. Mol. Sci. 2020;21:3772. doi: 10.3390/ijms21113772. PubMed DOI PMC
Wang X., Arcuino G., Takano T., Lin J., Peng W.G., Wan P., Li P., Xu Q., Liu Q.S., Goldman S.A., et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 2004;10:821–827. doi: 10.1038/nm1082. PubMed DOI
Cekic C., Linden J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 2016;16:177–192. doi: 10.1038/nri.2016.4. PubMed DOI
Danquah W., Meyer-Schwesinger C., Rissiek B., Pinto C., Serracant-Prat A., Amadi M., Iacenda D., Knop J.H., Hammel A., Bergmann P., et al. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med. 2016;8:366ra162. doi: 10.1126/scitranslmed.aaf8463. PubMed DOI
Choi G.B., Yim Y.S., Wong H., Kim S., Kim H., Kim S.V., Hoeffer C.A., Littman D.R., Huh J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–939. doi: 10.1126/science.aad0314. PubMed DOI PMC
Horvath G., Otrokocsi L., Beko K., Baranyi M., Kittel A., Fritz-Ruenes P.A., Sperlagh B. P2X7 Receptors Drive Poly(I:C) Induced Autism-like Behavior in Mice. J. Neurosci. 2019;39:2542–2561. doi: 10.1523/JNEUROSCI.1895-18.2019. PubMed DOI PMC
Nicke A., Baumert H.G., Rettinger J., Eichele A., Lambrecht G., Mutschler E., Schmalzing G. P2X1 and P2X3 receptors form stable trimers: A novel structural motif of ligand-gated ion channels. EMBO J. 1998;17:3016–3028. doi: 10.1093/emboj/17.11.3016. PubMed DOI PMC
North R.A. Molecular physiology of P2X receptors. Physiol. Rev. 2002;82:1013–1067. doi: 10.1152/physrev.00015.2002. PubMed DOI
Kawate T., Michel J.C., Birdsong W.T., Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature. 2009;460:592–598. doi: 10.1038/nature08198. PubMed DOI PMC
Browne L.E., Compan V., Bragg L., North R.A. P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J. Neurosci. 2013;33:3557–3566. doi: 10.1523/JNEUROSCI.2235-12.2013. PubMed DOI PMC
Harkat M., Peverini L., Cerdan A.H., Dunning K., Beudez J., Martz A., Calimet N., Specht A., Cecchini M., Chataigneau T., et al. On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc. Natl. Acad. Sci. USA. 2017;114:E3786–E3795. doi: 10.1073/pnas.1701379114. PubMed DOI PMC
McCarthy A.E., Yoshioka C., Mansoor S.E. Full-Length P2X7 Structures Reveal How Palmitoylation Prevents Channel Desensitization. Cell. 2019;179:659–670.e613. doi: 10.1016/j.cell.2019.09.017. PubMed DOI PMC
Pippel A., Stolz M., Woltersdorf R., Kless A., Schmalzing G., Markwardt F. Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc. Natl. Acad. Sci. USA. 2017;114:E2156–E2165. doi: 10.1073/pnas.1610414114. PubMed DOI PMC
Karasawa A., Kawate T. Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife. 2016;5 doi: 10.7554/eLife.22153. PubMed DOI PMC
Kawate T., Robertson J.L., Li M., Silberberg S.D., Swartz K.J. Ion access pathway to the transmembrane pore in P2X receptor channels. J. Gen. Physiol. 2011;137:579–590. doi: 10.1085/jgp.201010593. PubMed DOI PMC
Egan T.M., Khakh B.S. Contribution of calcium ions to P2X channel responses. J. Neurosci. 2004;24:3413–3420. doi: 10.1523/JNEUROSCI.5429-03.2004. PubMed DOI PMC
Samways D.S., Khakh B.S., Egan T.M. Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals. J. Biol. Chem. 2012;287:7594–7602. doi: 10.1074/jbc.M111.322461. PubMed DOI PMC
Samways D.S., Khakh B.S., Dutertre S., Egan T.M. Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors) Proc. Natl. Acad. Sci. USA. 2011;108:13800–13805. doi: 10.1073/pnas.1017550108. PubMed DOI PMC
Samways D.S., Egan T.M. Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family. J. Gen. Physiol. 2007;129:245–256. doi: 10.1085/jgp.200609677. PubMed DOI PMC
Yan Z., Liang Z., Obsil T., Stojilkovic S.S. Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate. J. Biol. Chem. 2006;281:32649–32659. doi: 10.1074/jbc.M512791200. PubMed DOI
Rokic M.B., Stojilkovic S.S., Vavra V., Kuzyk P., Tvrdonova V., Zemkova H. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor. PLoS ONE. 2013;8:e59411. doi: 10.1371/journal.pone.0059411. PubMed DOI PMC
Virginio C., MacKenzie A., North R.A., Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. 1999;519 Pt 2:335–346. doi: 10.1111/j.1469-7793.1999.0335m.x. PubMed DOI PMC
Roger S., Pelegrin P., Surprenant A. Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J. Neurosci. 2008;28:6393–6401. doi: 10.1523/JNEUROSCI.0696-08.2008. PubMed DOI PMC
Roger S., Gillet L., Baroja-Mazo A., Surprenant A., Pelegrin P. C-terminal calmodulin-binding motif differentially controls human and rat P2X7 receptor current facilitation. J. Biol. Chem. 2010;285:17514–17524. doi: 10.1074/jbc.M109.053082. PubMed DOI PMC
Khadra A., Tomic M., Yan Z., Zemkova H., Sherman A., Stojilkovic S.S. Dual Gating Mechanism and Function of P2X7 Receptor Channels. Biophys. J. 2013;104:2612–2621. doi: 10.1016/j.bpj.2013.05.006. PubMed DOI PMC
Allsopp R.C., Evans R.J. Contribution of the Juxtatransmembrane Intracellular Regions to the Time Course and Permeation of ATP-gated P2X7 Receptor Ion Channels. J. Biol. Chem. 2015;290:14556–14566. doi: 10.1074/jbc.M115.642033. PubMed DOI PMC
Yan Z., Li S., Liang Z., Tomic M., Stojilkovic S.S. The P2X7 receptor channel pore dilates under physiological ion conditions. J. Gen. Physiol. 2008;132:563–573. doi: 10.1085/jgp.200810059. PubMed DOI PMC
Jiang L.H., Rassendren F., Spelta V., Surprenant A., North R.A. Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. J. Biol. Chem. 2001;276:14902–14908. doi: 10.1074/jbc.M011327200. PubMed DOI
Roberts J.A., Evans R.J. Contribution of conserved polar glutamine, asparagine and threonine residues and glycosylation to agonist action at human P2X1 receptors for ATP. J. Neurochem. 2006;96:843–852. doi: 10.1111/j.1471-4159.2005.03593.x. PubMed DOI
Allsopp R.C., El Ajouz S., Schmid R., Evans R.J. Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: Mapping agonist binding and channel gating. J. Biol. Chem. 2011;286:29207–29217. doi: 10.1074/jbc.M111.260364. PubMed DOI PMC
Du J., Dong H., Zhou H.X. Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc. Natl. Acad. Sci. USA. 2012;109:4140–4145. doi: 10.1073/pnas.1119546109. PubMed DOI PMC
Digby H.R., Roberts J.A., Sutcliffe M.J., Evans R.J. Contribution of conserved glycine residues to ATP action at human P2X1 receptors: Mutagenesis indicates that the glycine at position 250 is important for channel function. J. Neurochem. 2005;95:1746–1754. doi: 10.1111/j.1471-4159.2005.03494.x. PubMed DOI
Roberts J.A., Evans R.J. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. J. Neurosci. 2007;27:4072–4082. doi: 10.1523/JNEUROSCI.2310-06.2007. PubMed DOI PMC
Rassendren F., Buell G., Newbolt A., North R.A., Surprenant A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 1997;16:3446–3454. doi: 10.1093/emboj/16.12.3446. PubMed DOI PMC
Boue-Grabot E., Emerit M.B., Toulme E., Seguela P., Garret M. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J. Biol. Chem. 2004;279:6967–6975. doi: 10.1074/jbc.M307772200. PubMed DOI
Boue-Grabot E., Barajas-Lopez C., Chakfe Y., Blais D., Belanger D., Emerit M.B., Seguela P. Intracellular cross talk and physical interaction between two classes of neurotransmitter-gated channels. J. Neurosci. 2003;23:1246–1253. doi: 10.1523/JNEUROSCI.23-04-01246.2003. PubMed DOI PMC
Lukacs G.L., Segal G., Kartner N., Grinstein S., Zhang F. Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem. J. 1997;328 Pt 2:353–361. doi: 10.1042/bj3280353. PubMed DOI PMC
Caohuy H., Jozwik C., Pollard H.B. Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway. J. Biol. Chem. 2009;284:25241–25253. doi: 10.1074/jbc.M109.035345. PubMed DOI PMC