Role of Conserved Residues and F322 in the Extracellular Vestibule of the Rat P2X7 Receptor in Its Expression, Function and Dye Uptake Ability

. 2020 Nov 10 ; 21 (22) : . [epub] 20201110

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33182845

Grantová podpora
18-05413S The Czech Science Foundation
LQ1604 Ministry of Education, Youth and Sports of the Czech Republic

Activation of the P2X7 receptor results in the opening of a large pore that plays a role in immune responses, apoptosis, and many other physiological and pathological processes. Here, we investigated the role of conserved and unique residues in the extracellular vestibule connecting the agonist-binding domain with the transmembrane domain of rat P2X7 receptor. We found that all residues that are conserved among the P2X receptor subtypes respond to alanine mutagenesis with an inhibition (Y51, Q52, and G323) or a significant decrease (K49, G326, K327, and F328) of 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP)-induced current and permeability to ethidium bromide, while the nonconserved residue (F322), which is also present in P2X4 receptor, responds with a 10-fold higher sensitivity to BzATP, much slower deactivation kinetics, and a higher propensity to form the large dye-permeable pore. We examined the membrane expression of conserved mutants and found that Y51, Q52, G323, and F328 play a role in the trafficking of the receptor to the plasma membrane, while K49 controls receptor responsiveness to agonists. Finally, we studied the importance of the physicochemical properties of these residues and observed that the K49R, F322Y, F322W, and F322L mutants significantly reversed the receptor function, indicating that positively charged and large hydrophobic residues are important at positions 49 and 322, respectively. These results show that clusters of conserved residues above the transmembrane domain 1 (K49-Y51-Q52) and transmembrane domain 2 (G326-K327-F328) are important for receptor structure, membrane expression, and channel gating and that the nonconserved residue (F322) at the top of the extracellular vestibule is involved in hydrophobic inter-subunit interaction which stabilizes the closed state of the P2X7 receptor channel.

Zobrazit více v PubMed

Adinolfi E., Pizzirani C., Idzko M., Panther E., Norgauer J., Di Virgilio F., Ferrari D. P2X(7) receptor: Death or life? Purinergic Signal. 2005;1:219–227. doi: 10.1007/s11302-005-6322-x. PubMed DOI PMC

Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol. Rev. 2006;58:58–86. doi: 10.1124/pr.58.1.5. PubMed DOI

Surprenant A., North R.A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 2009;71:333–359. doi: 10.1146/annurev.physiol.70.113006.100630. PubMed DOI

Stojilkovic S.S. Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol. Metab. 2009;20:460–468. doi: 10.1016/j.tem.2009.05.005. PubMed DOI PMC

Khakh B.S., North R.A. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron. 2012;76:51–69. doi: 10.1016/j.neuron.2012.09.024. PubMed DOI PMC

Coddou C., Yan Z., Obsil T., Huidobro-Toro J.P., Stojilkovic S.S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 2011;63:641–683. doi: 10.1124/pr.110.003129. PubMed DOI PMC

Surprenant A., Rassendren F., Kawashima E., North R.A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7) Science. 1996;272:735–738. doi: 10.1126/science.272.5262.735. PubMed DOI

Rassendren F., Buell G.N., Virginio C., Collo G., North R.A., Surprenant A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem. 1997;272:5482–5486. doi: 10.1074/jbc.272.9.5482. PubMed DOI

Kopp R., Krautloher A., Ramirez-Fernandez A., Nicke A. P2X7 Interactions and Signaling—Making Head or Tail of It. Front. Mol. Neurosci. 2019;12:183. doi: 10.3389/fnmol.2019.00183. PubMed DOI PMC

Di Virgilio F., Dal Ben D., Sarti A.C., Giuliani A.L., Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47:15–31. doi: 10.1016/j.immuni.2017.06.020. PubMed DOI

Vavra V., Bhattacharya A., Zemkova H. Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices. Neuroscience. 2011;188:1–12. doi: 10.1016/j.neuroscience.2011.04.067. PubMed DOI

Illes P., Khan T.M., Rubini P. Neuronal P2X7 Receptors Revisited: Do They Really Exist? J. Neurosci. 2017;37:7049–7062. doi: 10.1523/JNEUROSCI.3103-16.2017. PubMed DOI PMC

Kaczmarek-Hajek K., Zhang J., Kopp R., Grosche A., Rissiek B., Saul A., Bruzzone S., Engel T., Jooss T., Krautloher A., et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. eLife. 2018;7 doi: 10.7554/eLife.36217.001. PubMed DOI PMC

Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal. 2016;12:59–67. doi: 10.1007/s11302-015-9493-0. PubMed DOI PMC

Klaft Z.J., Schulz S.B., Maslarova A., Gabriel S., Heinemann U., Gerevich Z. Extracellular ATP differentially affects epileptiform activity via purinergic P2X7 and adenosine A1 receptors in naive and chronic epileptic rats. Epilepsia. 2012;53:1978–1986. doi: 10.1111/j.1528-1167.2012.03724.x. PubMed DOI

Nurkhametova D., Kudryavtsev I., Guselnikova V., Serebryakova M., Giniatullina R.R., Wojciechowski S., Tore F., Rizvanov A., Koistinaho J., Malm T., et al. Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges. Front. Cell. Neurosci. 2019;13:45. doi: 10.3389/fncel.2019.00045. PubMed DOI PMC

Sperlagh B., Illes P. P2X7 receptor: An emerging target in central nervous system diseases. Trends Pharmacol. Sci. 2014;35:537–547. doi: 10.1016/j.tips.2014.08.002. PubMed DOI

Stokes L., Spencer S.J., Jenkins T.A. Understanding the role of P2X7 in affective disorders-are glial cells the major players? Front. Cell. Neurosci. 2015;9:258. doi: 10.3389/fncel.2015.00258. PubMed DOI PMC

Garre J.M., Silva H.M., Lafaille J.J., Yang G. P2X7 receptor inhibition ameliorates dendritic spine pathology and social behavioral deficits in Rett syndrome mice. Nat. Commun. 2020;11:1784. doi: 10.1038/s41467-020-15590-5. PubMed DOI PMC

Koldej R.M., Perera T., Collins J., Ritchie D.S. Association between P2X7 Polymorphisms and Post-Transplant Outcomes in Allogeneic Haematopoietic Stem Cell Transplantation. Int. J. Mol. Sci. 2020;21:3772. doi: 10.3390/ijms21113772. PubMed DOI PMC

Wang X., Arcuino G., Takano T., Lin J., Peng W.G., Wan P., Li P., Xu Q., Liu Q.S., Goldman S.A., et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 2004;10:821–827. doi: 10.1038/nm1082. PubMed DOI

Cekic C., Linden J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 2016;16:177–192. doi: 10.1038/nri.2016.4. PubMed DOI

Danquah W., Meyer-Schwesinger C., Rissiek B., Pinto C., Serracant-Prat A., Amadi M., Iacenda D., Knop J.H., Hammel A., Bergmann P., et al. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med. 2016;8:366ra162. doi: 10.1126/scitranslmed.aaf8463. PubMed DOI

Choi G.B., Yim Y.S., Wong H., Kim S., Kim H., Kim S.V., Hoeffer C.A., Littman D.R., Huh J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–939. doi: 10.1126/science.aad0314. PubMed DOI PMC

Horvath G., Otrokocsi L., Beko K., Baranyi M., Kittel A., Fritz-Ruenes P.A., Sperlagh B. P2X7 Receptors Drive Poly(I:C) Induced Autism-like Behavior in Mice. J. Neurosci. 2019;39:2542–2561. doi: 10.1523/JNEUROSCI.1895-18.2019. PubMed DOI PMC

Nicke A., Baumert H.G., Rettinger J., Eichele A., Lambrecht G., Mutschler E., Schmalzing G. P2X1 and P2X3 receptors form stable trimers: A novel structural motif of ligand-gated ion channels. EMBO J. 1998;17:3016–3028. doi: 10.1093/emboj/17.11.3016. PubMed DOI PMC

North R.A. Molecular physiology of P2X receptors. Physiol. Rev. 2002;82:1013–1067. doi: 10.1152/physrev.00015.2002. PubMed DOI

Kawate T., Michel J.C., Birdsong W.T., Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature. 2009;460:592–598. doi: 10.1038/nature08198. PubMed DOI PMC

Browne L.E., Compan V., Bragg L., North R.A. P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J. Neurosci. 2013;33:3557–3566. doi: 10.1523/JNEUROSCI.2235-12.2013. PubMed DOI PMC

Harkat M., Peverini L., Cerdan A.H., Dunning K., Beudez J., Martz A., Calimet N., Specht A., Cecchini M., Chataigneau T., et al. On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc. Natl. Acad. Sci. USA. 2017;114:E3786–E3795. doi: 10.1073/pnas.1701379114. PubMed DOI PMC

McCarthy A.E., Yoshioka C., Mansoor S.E. Full-Length P2X7 Structures Reveal How Palmitoylation Prevents Channel Desensitization. Cell. 2019;179:659–670.e613. doi: 10.1016/j.cell.2019.09.017. PubMed DOI PMC

Pippel A., Stolz M., Woltersdorf R., Kless A., Schmalzing G., Markwardt F. Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc. Natl. Acad. Sci. USA. 2017;114:E2156–E2165. doi: 10.1073/pnas.1610414114. PubMed DOI PMC

Karasawa A., Kawate T. Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife. 2016;5 doi: 10.7554/eLife.22153. PubMed DOI PMC

Kawate T., Robertson J.L., Li M., Silberberg S.D., Swartz K.J. Ion access pathway to the transmembrane pore in P2X receptor channels. J. Gen. Physiol. 2011;137:579–590. doi: 10.1085/jgp.201010593. PubMed DOI PMC

Egan T.M., Khakh B.S. Contribution of calcium ions to P2X channel responses. J. Neurosci. 2004;24:3413–3420. doi: 10.1523/JNEUROSCI.5429-03.2004. PubMed DOI PMC

Samways D.S., Khakh B.S., Egan T.M. Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals. J. Biol. Chem. 2012;287:7594–7602. doi: 10.1074/jbc.M111.322461. PubMed DOI PMC

Samways D.S., Khakh B.S., Dutertre S., Egan T.M. Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors) Proc. Natl. Acad. Sci. USA. 2011;108:13800–13805. doi: 10.1073/pnas.1017550108. PubMed DOI PMC

Samways D.S., Egan T.M. Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family. J. Gen. Physiol. 2007;129:245–256. doi: 10.1085/jgp.200609677. PubMed DOI PMC

Yan Z., Liang Z., Obsil T., Stojilkovic S.S. Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate. J. Biol. Chem. 2006;281:32649–32659. doi: 10.1074/jbc.M512791200. PubMed DOI

Rokic M.B., Stojilkovic S.S., Vavra V., Kuzyk P., Tvrdonova V., Zemkova H. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor. PLoS ONE. 2013;8:e59411. doi: 10.1371/journal.pone.0059411. PubMed DOI PMC

Virginio C., MacKenzie A., North R.A., Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. 1999;519 Pt 2:335–346. doi: 10.1111/j.1469-7793.1999.0335m.x. PubMed DOI PMC

Roger S., Pelegrin P., Surprenant A. Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J. Neurosci. 2008;28:6393–6401. doi: 10.1523/JNEUROSCI.0696-08.2008. PubMed DOI PMC

Roger S., Gillet L., Baroja-Mazo A., Surprenant A., Pelegrin P. C-terminal calmodulin-binding motif differentially controls human and rat P2X7 receptor current facilitation. J. Biol. Chem. 2010;285:17514–17524. doi: 10.1074/jbc.M109.053082. PubMed DOI PMC

Khadra A., Tomic M., Yan Z., Zemkova H., Sherman A., Stojilkovic S.S. Dual Gating Mechanism and Function of P2X7 Receptor Channels. Biophys. J. 2013;104:2612–2621. doi: 10.1016/j.bpj.2013.05.006. PubMed DOI PMC

Allsopp R.C., Evans R.J. Contribution of the Juxtatransmembrane Intracellular Regions to the Time Course and Permeation of ATP-gated P2X7 Receptor Ion Channels. J. Biol. Chem. 2015;290:14556–14566. doi: 10.1074/jbc.M115.642033. PubMed DOI PMC

Yan Z., Li S., Liang Z., Tomic M., Stojilkovic S.S. The P2X7 receptor channel pore dilates under physiological ion conditions. J. Gen. Physiol. 2008;132:563–573. doi: 10.1085/jgp.200810059. PubMed DOI PMC

Jiang L.H., Rassendren F., Spelta V., Surprenant A., North R.A. Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. J. Biol. Chem. 2001;276:14902–14908. doi: 10.1074/jbc.M011327200. PubMed DOI

Roberts J.A., Evans R.J. Contribution of conserved polar glutamine, asparagine and threonine residues and glycosylation to agonist action at human P2X1 receptors for ATP. J. Neurochem. 2006;96:843–852. doi: 10.1111/j.1471-4159.2005.03593.x. PubMed DOI

Allsopp R.C., El Ajouz S., Schmid R., Evans R.J. Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: Mapping agonist binding and channel gating. J. Biol. Chem. 2011;286:29207–29217. doi: 10.1074/jbc.M111.260364. PubMed DOI PMC

Du J., Dong H., Zhou H.X. Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc. Natl. Acad. Sci. USA. 2012;109:4140–4145. doi: 10.1073/pnas.1119546109. PubMed DOI PMC

Digby H.R., Roberts J.A., Sutcliffe M.J., Evans R.J. Contribution of conserved glycine residues to ATP action at human P2X1 receptors: Mutagenesis indicates that the glycine at position 250 is important for channel function. J. Neurochem. 2005;95:1746–1754. doi: 10.1111/j.1471-4159.2005.03494.x. PubMed DOI

Roberts J.A., Evans R.J. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. J. Neurosci. 2007;27:4072–4082. doi: 10.1523/JNEUROSCI.2310-06.2007. PubMed DOI PMC

Rassendren F., Buell G., Newbolt A., North R.A., Surprenant A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 1997;16:3446–3454. doi: 10.1093/emboj/16.12.3446. PubMed DOI PMC

Boue-Grabot E., Emerit M.B., Toulme E., Seguela P., Garret M. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J. Biol. Chem. 2004;279:6967–6975. doi: 10.1074/jbc.M307772200. PubMed DOI

Boue-Grabot E., Barajas-Lopez C., Chakfe Y., Blais D., Belanger D., Emerit M.B., Seguela P. Intracellular cross talk and physical interaction between two classes of neurotransmitter-gated channels. J. Neurosci. 2003;23:1246–1253. doi: 10.1523/JNEUROSCI.23-04-01246.2003. PubMed DOI PMC

Lukacs G.L., Segal G., Kartner N., Grinstein S., Zhang F. Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem. J. 1997;328 Pt 2:353–361. doi: 10.1042/bj3280353. PubMed DOI PMC

Caohuy H., Jozwik C., Pollard H.B. Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway. J. Biol. Chem. 2009;284:25241–25253. doi: 10.1074/jbc.M109.035345. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...