The Role of Visual Feedback on Power Output During Intermittent Wingate Testing in Ice Hockey Players

. 2018 Apr 09 ; 6 (2) : . [epub] 20180409

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29910336

Background: Visual feedback may help elicit peak performance during different types of strength and power testing, but its effect during the anaerobic Wingate test is unexplored. Therefore, the purpose of this study was to determine the effect of visual feedback on power output during a hockey-specific intermittent Wingate test (AnWT6x6) consisting of 6 stages of 6 s intervals with a 1:1 work-to-rest ratio. Methods: Thirty elite college-aged hockey players performed the AnWT6x6 with either constant (n = 15) visual feedback during all 6 stages (CVF) or restricted (n = 15) visual feedback (RVF) where feedback was shown only during the 2nd through 5th stages. Results: In the first stage, there were moderate-to-large effect sizes for absolute peak power (PP) output and PP relative to body mass and PP relative to fat-free mass. However, the remaining stages (2⁻6) displayed small or negligible effects. Conclusions: These data indicate that visual feedback may play a role in optimizing power output in a non-fatigued state (1st stage), but likely does not play a role in the presence of extreme neuromuscular fatigue (6th stage) during Wingate testing. To achieve the highest peak power, coaches and researchers could provide visual feedback during Wingate testing, as it may positively influence performance in the early stages of testing, but does not result in residual fatigue or negatively affect performance during subsequent stages.

Zobrazit více v PubMed

Jung M.-C., Hallbeck M.S. Quantification of the effects of instruction type, verbal encouragement, and visual feedback on static and peak handgrip strength. Int. J. Ind. Ergon. 2004;34:367–374. doi: 10.1016/j.ergon.2004.03.008. DOI

Brown L.E., Weir J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J. Exerc. Physiol. Online. 2001;4:1–21.

Campenella B., Mattacola C.G., Kimura I.F. Effect of visual feedback and verbal encouragement on concentric quadriceps and hamstrings peak torque of males and females. Isokinet. Exerc. Sci. 2000;8:1–6.

Baltzopoulos V., Williams J.G., Brodie D.A. Sources of error in isokinetic dynamometry: Effects of visual feedback on maximum torque measurements. J. Orthop. Sports Phys. Ther. 1991;13:138–142. doi: 10.2519/jospt.1991.13.3.138. PubMed DOI

Hopper D.M., Axel Berg M.A., Andersen H., Madan R. The influence of visual feedback on power during leg press on elite women field hockey players. Phys. Ther. Sport. 2003;4:182–186. doi: 10.1016/S1466-853X(03)00068-3. DOI

Theodorou A., Paradisis G., Smpokos E., Chatzinikolaou A., Fatouros I., King R.F.G.J., Cooke C.B. The effect of combined supplementation of carbohydrates and creatine on anaerobic performance. Biol. Sport. 2017;34:169–175. doi: 10.5114/biolsport.2017.65336. PubMed DOI PMC

Lipinska P., Szwarc A. Laboratory tests and game performance of young soccer players. Trends Sport Sci. 2016;23:33–39.

Dragula L., Lehnert M., Psotta R., Gonosová Z., Valenta S., Stastny P. The relative force in squat jump is the best laboratory predictor of sprint performance in adolescent soccer players. Hum. Mov. 2017;18:83–90.

Roczniok R., Stanula A., Gabryś T., Szmatlan-Gabryś U., Gołaś A., Stastny P. Physical fitness and performance of polish ice-hockey players competing at different sports levels. J. Hum. Kinet. 2016;50:201–208. doi: 10.1515/hukin-2015-0165. PubMed DOI PMC

Quinney H., Dewart R., Game A., Snydmiller G., Warburton D., Bell G. A 26 year physiological description of a National Hockey League team. Appl. Phys. Nutr. Metab. 2008;33:753–760. doi: 10.1139/H08-051. PubMed DOI

Vescovi J.D., Murray T.M., Fiala K.A., VanHeest J.L. Off-ice performance and draft status of elite ice hockey players. Int. J. Sports Phys. Perform. 2006;1:207–221. doi: 10.1123/ijspp.1.3.207. PubMed DOI

Kavaliauskas M., Phillips S.M. Reliability and sensitivity of the 6 and 30 second Wingate tests in physically active males and females. Isokinet. Exerc. Sci. 2016;24:277–284. doi: 10.3233/IES-160632. DOI

Herbert P., Sculthorpe N., Baker J.S., Grace F.M. Validation of a six second cycle test for the determination of peak power output. Res. Sports Med. 2015;23:115–125. doi: 10.1080/15438627.2015.1005294. PubMed DOI

Attia A., Hachana Y., Chaabène H., Gaddour A., Neji Z., Shephard R.J., Chelly M.S. Reliability and validity of a 20-s alternative to the Wingate anaerobic test in team sport male athletes. PLoS ONE. 2014;9:e114444. doi: 10.1371/journal.pone.0114444. PubMed DOI PMC

Hachana Y., Attia A., Chaabène H., Gallas S., Sassi R.H., Dotan R. Test-retest reliability and circadian performance variability of a 15-s Wingate Anaerobic Test. Biol. Rhythm Res. 2012;43:413–421. doi: 10.1080/09291016.2011.599634. DOI

Hachana Y., Attia A., Nassib S., Shephard R.J., Chelly M.S. Test-retest reliability,criterion-related validity, and minimal detectable change of score on an abbreviated wingate test for field sport participants. J. Strength Cond. Res. 2012;26:1324–1330. doi: 10.1519/JSC.0b013e3182305485. PubMed DOI

Kavaliauskas M., Aspe R.R., Babraj J. High-Intensity Cycling Training: The Effect of Work-to-Rest Intervals on Running Performance Measures. J. Strength Cond. Res. 2015;29:2229–2236. doi: 10.1519/JSC.0000000000000868. PubMed DOI

Potteiger J.A., Smith D.L., Maier M.L., Foster T.S. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men’s hockey athletes. J. Strength Cond. Res. 2010;24:1755–1762. doi: 10.1519/JSC.0b013e3181e06cfb. PubMed DOI

Stanula A., Roczniok R., Maszczyk A., Pietraszewski P., Zając A. The role of aerobic capacity in high-intensity intermittent efforts in ice-hockey. Biol. Sport. 2014;31:193–199. doi: 10.5604/20831862.1111437. PubMed DOI PMC

Roczniok R., Maszczyk A., Czuba M., Stanula A., Pietraszewski P., Gabryś T. The predictive value of on-ice special tests in relation to various indexes of aerobic and anaerobic capacity in ice hockey players. Hum. Mov. 2012;13:28–32. doi: 10.2478/v10038-012-0001-x. DOI

Sjøgaard G., Jørgensen L.V., Ekner D., Søgaard K. Muscle involvement during intermittent contraction patterns with different target force feedback modes. Clin. Biomech. 2000;15:S25–S29. doi: 10.1016/S0268-0033(00)00056-5. PubMed DOI

Madeleine P., Jørgensen L., Søgaard K., Arendt-Nielsen L., Sjøgaard G. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: Effects of the feedback mode. Eur. J. Appl. Phys. 2002;87:28–37. doi: 10.1007/s00421-002-0578-4. PubMed DOI

Tod D., Iredale F., Gill N. ‘Psyching-up’and muscular force production. Sports Med. 2003;33:47–58. doi: 10.2165/00007256-200333010-00004. PubMed DOI

Minett G.M., Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front. Phys. 2014;5:24. doi: 10.3389/fphys.2014.00024. PubMed DOI PMC

Lochbaum M., Gottardy J. A meta-analytic review of the approach-avoidance achievement goals and performance relationships in the sport psychology literature. J. Sport Health Sci. 2015;4:164–173. doi: 10.1016/j.jshs.2013.12.004. DOI

Frikha M., Chaâri N., Mezghanni N., Souissi N. Influence of warm-up duration and recovery interval prior to exercise on anaerobic performance. Biol. Sport. 2016;33:361–366. doi: 10.5604/20831862.1221830. PubMed DOI PMC

Avelar N.C.P., Costa S.J., Da Fonseca S.F., Tossige-Gomes R., Gripp F.J., Coimbra C.C., Lacerda A.C. The effects of passive warm-up vs. wholebody vibration on high-intensity performance during sprint cycle exercise. J. Strength Cond. Res. 2012;26:2997–3003. doi: 10.1519/JSC.0b013e318243fb48. PubMed DOI

McMillian D.J., Moore J.H., Hatler B.S., Taylor D.C. Dynamic vs. static-stretching warm up: The effect on power and agility performance. J. Strength Cond. Res. 2006;20:492–499. doi: 10.1519/18205.1. PubMed DOI

Barfield J.P., Sells P.D., Rowe D.A., Hannigan-Downs K. Practice effect of the Wingate anaerobic test. J. Strength Cond. Res. 2002;16:472–473. PubMed

Tipton C.M., Oppliger R.A. The Iowa wrestling study: Lessons for physicians. Iowa Med. 1984;74:381–385. PubMed

Brown D., Mackenzie J., Dennis K., Cullen R. Comparison of body composition techniques to determine body fat in high school wrestlers. JEP Online. 2006;9:24–32.

Montgomery D., Turcotte R., Gamble E., Ladouceur G. Validation of a cycling test of anaerobic endurance for ice hockey players. Res. Sports Med. Int. J. 1990;2:11–22. doi: 10.1080/15438629009511893. DOI

Bar-Or O. The Wingate Anaerobic Test An Update on Methodology, Reliability and Validity. Sports Med. Int. J. Appl. Med. Sci. Sport Exerc. 1987;4:381–394. PubMed

McLester J.R., Green J.M., Chouinard J.L. Effects of standing vs. seated posture on repeated wingate performance. J. Strength Cond. Res. 2004;18:816–820. doi: 10.1519/14073.1. PubMed DOI

Reiser Ii R.F., Maines J.M., Eisenmann J.C., Wilkinson J.G. Standing and seated Wingate protocols in human cycling. A comparison of standard parameters. Eur. J. Appl. Phys. 2002;88:152–157. doi: 10.1007/s00421-002-0694-1. PubMed DOI

Karaba-Jakovljević D., Popadić-Gaćesa J., Grujić N., Barak O., Drapsin M. Motivation and motoric tests in sports. Med. Pregl. 2007;60:231–236. doi: 10.2298/MPNS0706231K. PubMed DOI

Harvey L., Bousson M., McLellan C., Lovell D. The effect of previous wingate performance using one body region on subsequent wingate performance using a different body region. J. Hum. Kinet. 2017;56:119–126. doi: 10.1515/hukin-2017-0029. PubMed DOI PMC

Petr M., Št‘astný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC

Cohen L., Manion L., Morrison K. Research Methods in Education. Routledge; London, UK: 2002.

Kellis E., Baltzopoulos V. Resistive Eccentric Exercise: Effects of Visual Feedback on Maximum Moment of Knee Extensors and Flexors. J. Orthop. Sports Phys. Ther. 1996;23:120–124. doi: 10.2519/jospt.1996.23.2.120. PubMed DOI

Baltzopoulos V., Eston R.G., Maclaren D. A comparison of power outputs on the Wingate test and on a test using an isokinetic device. Ergonomics. 1988;31:1693–1699. doi: 10.1080/00140138808966819. PubMed DOI

Brown L.E., Whitehurst M., Buchalter D.N. Comparison of Bilateral Isokinetic Knee Extension/Flexion and Cycle Ergometry Tests of Power. J. Strength Cond. Res. 1994;8:139–143.

Fernandez-del-Olmo M., Rodriguez F., Marquez G., Iglesias X., Marina M., Benitez A., Vallejo L., Acero R.M. Isometric knee extensor fatigue following a Wingate test: Peripheral and central mechanisms. Scand. J. Med. Sci. Sports. 2013;23:57–65. doi: 10.1111/j.1600-0838.2011.01355.x. PubMed DOI

Peterson B.J., Fitzgerald J.S., Dietz C.C., Ziegler K.S., Baker S.E., Snyder E.M. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J. Strength Cond. Res. 2016;30:2375–2381. doi: 10.1519/JSC.0000000000001341. PubMed DOI

Farlinger C.M., Kruisselbrink L.D., Fowles J.R. Relationships to skating performance in competitive hockey players. J. Strength Cond. Res. 2007;21:915–922. PubMed

Peterson B.J., Fitzgerald J.S., Dietz C.C., Ziegler K.S., Ingraham S.J., Baker S.E., Snyder E.M. Division I hockey players generate more power than Division III players during on- and off-ice performance tests. J. Strength Cond. Res. 2015;29:1191–1196. doi: 10.1519/JSC.0000000000000754. PubMed DOI

Eriksson M., Halvorsen K.A., Gullstrand L. Immediate effect of visual and auditory feedback to control the running mechanics of well-trained athletes. J. Sports Sci. 2011;29:253–262. doi: 10.1080/02640414.2010.523088. PubMed DOI

MacRae H. Cycling with video feedback improves performance in untrained, but not in trained women. Res. Sports Med. 2003;11:261–276. doi: 10.1080/714041040. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace