Impact of SARS-CoV-2 on Aerobic and Anaerobic Capacity in Professional Ice Hockey Players
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40429473
PubMed Central
PMC12112330
DOI
10.3390/jcm14103478
PII: jcm14103478
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, aerobic capacity, anaerobic capacity, ice hockey,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: COVID-19 poses significant physiological challenges for athletes, particularly those engaged in high-intensity intermittent sports such as ice hockey. This study aimed to evaluate the impact of SARS-CoV-2 infection-especially symptomatic cases-on aerobic and anaerobic performance in professional ice hockey players. Methods: Fifty athletes from the Polish Hockey League were assigned to three groups: control (CG, n = 13), asymptomatic COVID-19 (NSG, n = 28), and symptomatic COVID-19 with post-infection SpO2 < 90% (WSG, n = 9). Each underwent assessments at three time points-pre-preparatory period 2020/2021, post-preparatory period 2020/2021, and pre-preparatory period 2021/2022. Aerobic capacity was measured via a progressive cycle ergometer test (VO2max, VO2 at lactate threshold [VO2Lt], minute ventilation [V'E], breathing frequency [BF], and lactate clearance rate [ΔLa]), and anaerobic capacity via a 30 s Wingate test (relative mean power). Results: Compared with CG and NSG, symptomatic athletes exhibited significant post-infection declines in VO2max (48.2 ± 2.9 vs. 56.2 ± 6.2 and 54.6 ± 3.9 mL/kg/min; p = 0.006, d = 1.56 vs. CG; p < 0.024, d = 1.79 vs. NSG) and VO2Lt (p < 0.05). Relative mean power also decreased in WSG (p < 0.05). In contrast, CG and NSG improved or maintained these metrics over the same period. Symptomatic players showed elevated BF post infection (p = 0.022, d = 1.72) and reduced V'E (p = 0.035; d = 0.83), while ΔLa was markedly lower (p = 0.0004; d = 2.86). Conclusions: SARS-CoV-2 infection, particularly symptomatic cases, can significantly impair both aerobic and anaerobic capacity in elite hockey players. Targeted recovery protocols are essential for restoring performance in affected athletes.
Zobrazit více v PubMed
Carey D.G., Drake M.M., Pliego G.J., Raymond R.L. Do hockey players need aerobic fitness? Relation between VO₂MAX and fatigue during high-intensity intermittent ice skating. J. Strength Cond. Res. 2007;21:963–966. PubMed
Cox M.H., Miles D.S., Verde T.J., Rhodes E.C. Applied physiology of ice hockey. Sports Med. 1995;19:184–201. doi: 10.2165/00007256-199519030-00004. PubMed DOI
Hvidberg C. Steady-state thermomechanical modelling of ice flow near the centre of large ice sheets with the finite-element technique. Ann. Glaciol. 1996;23:116–123. doi: 10.3189/S026030550001332X. DOI
Montgomery D.L., Lockwood K. Physiological profile of professional hockey players—A longitudinal comparison. Appl. Physiol. Nutr. Metab. 2006;31:181–185. doi: 10.1139/h06-012. PubMed DOI
Quinney H.A., Dewart R., Game A., Snydmiller G., Warburton D., Bell G. A 26-year physiological description of a National Hockey League team. Appl. Physiol. Nutr. Metab. 2008;33:753–760. doi: 10.1139/H08-051. PubMed DOI
Green M., Pivarnik J., Carrier D., Womack C. Relationship between physiological profiles and on-ice performance of a national collegiate athletic association division i hockey team. J. Strength Cond. Res. 2006;20:43–46. doi: 10.1519/R-17985.1. PubMed DOI
Roczniok R., Stanula A., Gabryś T., Szmatlan-Gabryś U., Gołaś A., Stastny P. Physical fitness and performance of Polish ice-hockey players competing at different sports levels. J. Hum. Kinet. 2016;51:201–208. doi: 10.1515/hukin-2015-0165. PubMed DOI PMC
Rice M., Warburton D., Gaytán-González A., Jamnik V., Kaufman K., Warburton D., Souster M., Bredin S. The relationship between off-ice testing and on-ice performance in male youth Ice hockey players. Front. Sports Act. Living. 2024;6:1418713. doi: 10.3389/fspor.2024.1418713. PubMed DOI PMC
Stanula A., Roczniok R. Game intensity analysis of elite adolescent ice hockey players. J. Hum. Kinet. 2014;44:211–221. doi: 10.2478/hukin-2014-0126. PubMed DOI PMC
Vescovi J.D., Murray T.M., Fiala K.A., Vanheest J.L. Off-ice performance and draft status of elite ice hockey players. Int. J. Sports Physiol. Perform. 2006;1:207–221. doi: 10.1123/ijspp.1.3.207. PubMed DOI
Stanula A., Gabryś T., Roczniok R., Szmatlan-Gabryś U., Ozimek M., Mostowik A. Quantification of the demands during an ice-hockey game based on intensity zones determined from the incremental test outcomes. J. Strength Cond. Res. 2016;30:176–183. doi: 10.1519/JSC.0000000000001081. PubMed DOI
Stastny P., Tufano J.J., Kregl J., Petr M., Blazek D., Steffl M., Roczniok R., Fiala M., Gołas A., Zmijewski P. The role of visual feedback on power output during intermittent Wingate testing in ice hockey players. Sports. 2018;6:32. doi: 10.3390/sports6020032. PubMed DOI PMC
Montgomery D.L. Physiology of ice hockey. Sports Med. 1988;5:99–126. doi: 10.2165/00007256-198805020-00003. PubMed DOI
Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18. doi: 10.1038/s41541-020-0170-0. PubMed DOI PMC
WHO Coronavirus Disease 2019 (COVID-19): Situation Report—41. Mar 29, 2020. [(accessed on 25 March 2022)]. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200301-sitrep-41-covid-19.pdf.
Li R., Pei S., Chen B., Song Y., Zhang T., Yang W., Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) Science. 2020;368:489–493. doi: 10.1126/science.abb3221. PubMed DOI PMC
Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316. PubMed DOI PMC
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020;94:e00127-20. doi: 10.1128/JVI.00127-20. PubMed DOI PMC
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC
Ren L.-L., Wang Y.-M., Wu Z.-Q., Xiang Z.-C., Guo L., Xu T., Jiang Y.-Z., Xiong Y., Li Y.-J., Li X.-W., et al. Identification of a novel coronavirus causing severe pneumonia in humans: A descriptive study. Chin. Med. J. 2020;133:1015–1024. doi: 10.1097/CM9.0000000000000722. PubMed DOI PMC
Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J., et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020;382:1175–1177. doi: 10.1056/NEJMc2001737. PubMed DOI PMC
Kuipers H., Verstappen F.T.J., Keizer H.A., Geurten P., van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985;6:197–201. doi: 10.1055/s-2008-1025839. PubMed DOI
Durocher J.J., Leetun D.T., Carter J.R. Sport-specific assessment of lactate threshold and aerobic capacity throughout a collegiate hockey season. Appl. Physiol. Nutr. Metab. 2008;33:1165–1171. doi: 10.1139/H08-107. PubMed DOI
Tesch P.A., Wright J.E. Recovery from short term intense exercise: Its relation to capillary supply and blood lactate concentration. Eur. J. Appl. Physiol. Occup. Physiol. 1983;52:98–103. doi: 10.1007/BF00429033. PubMed DOI
Colliander E.B., Dudley G.A., Tesch P.A. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions. Eur. J. Appl. Physiol. 1988;58:81–86. doi: 10.1007/BF00636607. PubMed DOI
Karakoç B., Akalan C., Alemdaroğlu U., Arslan E. The relationship between the Yo-Yo tests, anaerobic performance and aerobic performance in young soccer players. J. Hum. Kinet. 2012;35:81–88. doi: 10.2478/v10078-012-0081-x. PubMed DOI PMC
McMahon S. The relationship between aerobic fitness and both power output and subsequent recovery during maximal intermittent exercise. J. Sci. Med. Sport. 1998;1:219–227. doi: 10.1016/S1440-2440(09)60005-0. PubMed DOI
Takahashi H., Inaki M., Fujimoto K., Katsuta S., Anno I., Nitsu M., Itai Y. Control of the rate of phosphocreatine resynthesis after exercise in trained and untrained human quadriceps muscles. Eur. J. Appl. Physiol. Occup. Physiol. 1995;71:396–404. doi: 10.1007/BF00635872. PubMed DOI
Yagüe P.L., Del Valle M.E., Egocheaga J., Linnamo V., Fernández A. The competitive demands of elite male rink hockey. Biol. Sport. 2013;30:195–199. doi: 10.5604/20831862.1059211. PubMed DOI PMC
Tomlin D.L., Wenger H.A. The Relationship Between Aerobic Fitness and Recovery from High Intensity Intermittent Exercise. Sports Med. 2001;31:1–11. doi: 10.2165/00007256-200131010-00001. PubMed DOI
Holloszy J.O., Coyle E.F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 2016;121:831–838. doi: 10.1152/jappl.1984.56.4.831. PubMed DOI
Gharbi Z., Dardouri W., Haj-Sassi R., Castagna C., Chamari K., Souissi N. Effect of the number of sprint repetitions on the variation of blood lactate concentration in repeated sprint sessions. Biol. Sport. 2014;31:151–156. doi: 10.5604/20831862.1099046. PubMed DOI PMC
Gibala M.J., Little J.P., van Essen M., Wilkin G.P., Burgomaster K.A., Safdar A., Raha S., Tarnopolsky M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006;575:901–911. doi: 10.1113/jphysiol.2006.112094. PubMed DOI PMC
Green H.J. Glycogen depletion patterns during continuous and intermittent ice skating. Med. Sci. Sports. 1978;10:183–187. PubMed
Page E.M., Ariëns R.A.S. Mechanisms of thrombosis and cardiovascular complications in COVID-19. Thromb. Res. 2021;200:1–8. doi: 10.1016/j.thromres.2021.01.005. PubMed DOI PMC