In Situ Observation of Carbon Nanotube Layer Growth on Microbolometers with Substrates at Ambient Temperature
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
9999-NIST
Intramural NIST DOC - United States
PubMed
29910508
PubMed Central
PMC5998686
DOI
10.1063/1.5016465
PII: 114503
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive in IR imaging devices. Since CNT growth occurs at elevated temperatures, integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally-isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally-heated membrane while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.
Brno University of Technology Technická 3058 10 616 00 Brno Czech Republic
Northwestern Polytechnical University 127 West Youyi Road Xi'an Shaanxi P R China
See more in PubMed
Rogalski A. Infrared Phys Technol. 2011;54:136.
Liddiard KC. Infrared Phys. 1984;24:57.
Neuzil P, Liu Y, Feng HH, Zeng WJ. IEEE Electron Device Lett. 2005;26:320.
Mei T, Neuzil P, Karunasiri G, Zeng W. Appl Phys Lett. 2002;80:2183.
Lehman JH, Engtrakul C, Gennett T, Dillon AC. Appl Opt. 2005;44:483. PubMed
Yang ZP, Ci L, Bur JA, Lin SY, Ajayan PM. Nano Letters. 2008;8:446. PubMed
Lehman J, Sanders A, Hanssen L, Wilthan B, Zeng J, Jensen C. Nano Lett. 2010;10:3261. PubMed
Meyyappan M, Lance D, Alan C, David H. Plasma Sources Sci Technol. 2003;12:205.
Huang SM, Dai LM, Mau AWH. Adv Mater. 2002;14:1140.
Zhang SL, Östling M. Crit Rev Solid State Mater Sci. 2003;28:1.
Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, PhilipWong HS, Mitra S. Nature. 2013;501:526. PubMed
Balram KC, Westly DA, Davanco M, Grutter K, Li Q, Michels T, Ray CH, Yu L, Kasica R, Wallin CB, Gilbert I, Bryce BA, Simelgor G, Topolancik J, Lobontiu N, Liu Y, Neuzil P, Svatos V, Dill KA, Bertrand NA, Metzler M, Lopez G, Czaplewski DA, Ocola L, Srinivasan K, Stavis S, Aksyuk V, Liddle JA, Krylov S, Ilic BR. J Res Natl Inst Stand. 2016;121:464. PubMed PMC
Gu X, Karunasiri G, Chen G, Sridhar U, Xu B. Appl Phys Lett. 1998;72:1881.
He X, Karunasiri G, Mei T, Zeng WJ, Neuzil P, Sridhar U. IEEE Electron Device Lett. 2000;21:233.
Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K. Proc Natl Acad Sci U S A. 2009;106:6044. PubMed PMC