• This record comes from PubMed

RNA methylation in nuclear pre-mRNA processing

. 2018 Nov ; 9 (6) : e1489. [epub] 20180619

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Grant support
Wellcome Trust - United Kingdom
084316/B/07/Z Wellcome Trust - United Kingdom

Eukaryotic RNA can carry more than 100 different types of chemical modifications. Early studies have been focused on modifications of highly abundant RNA, such as ribosomal RNA and transfer RNA, but recent technical advances have made it possible to also study messenger RNA (mRNA). Subsequently, mRNA modifications, namely methylation, have emerged as key players in eukaryotic gene expression regulation. The most abundant and widely studied internal mRNA modification is N6 -methyladenosine (m6 A), but the list of mRNA chemical modifications continues to grow as fast as interest in this field. Over the past decade, transcriptome-wide studies combined with advanced biochemistry and the discovery of methylation writers, readers, and erasers revealed roles for mRNA methylation in the regulation of nearly every aspect of the mRNA life cycle and in diverse cellular, developmental, and disease processes. Although large parts of mRNA function are linked to its cytoplasmic stability and regulation of its translation, a number of studies have begun to provide evidence for methylation-regulated nuclear processes. In this review, we summarize the recent advances in RNA methylation research and highlight how these new findings have contributed to our understanding of methylation-dependent RNA processing in the nucleus. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

See more in PubMed

Aas, P. A. , Otterlei, M. , Falnes, P. O. , Vagbo, C. B. , Skorpen, F. , Akbari, M. , … Krokan, H. E. (2003). Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature, 421(6925), 859–863. 10.1038/nature01363 PubMed DOI

Adams, J. M. , & Cory, S. (1975). Modified nucleosides and bizarre 5′‐termini in mouse myeloma mRNA. Nature, 255(5503), 28–33. PubMed

Agafonov, D. E. , Kastner, B. , Dybkov, O. , Hofele, R. V. , Liu, W. T. , Urlaub, H. , … Stark, H. (2016). Molecular architecture of the human U4/U6.U5 tri‐snRNP. Science, 351(6280), 1416–1420. 10.1126/science.aad2085 PubMed DOI

Alarcon, C. R. , Goodarzi, H. , Lee, H. , Liu, X. , Tavazoie, S. , & Tavazoie, S. F. (2015). HNRNPA2B1 is a mediator of m(6)A‐dependent nuclear RNA processing events. Cell, 162(6), 1299–1308. 10.1016/j.cell.2015.08.011 PubMed DOI PMC

Alarcon, C. R. , Lee, H. , Goodarzi, H. , Halberg, N. , & Tavazoie, S. F. (2015). N6‐methyladenosine marks primary microRNAs for processing. Nature, 519(7544), 482–485. 10.1038/nature14281 PubMed DOI PMC

Amort, T. , Rieder, D. , Wille, A. , Khokhlova‐Cubberley, D. , Riml, C. , Trixl, L. , … Lusser, A. (2017). Distinct 5‐methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 18(1), 1 10.1186/s13059-016-1139-1 PubMed DOI PMC

Baltz, A. G. , Munschauer, M. , Schwanhausser, B. , Vasile, A. , Murakawa, Y. , Schueler, M. , … Landthaler, M. (2012). The mRNA‐bound proteome and its global occupancy profile on protein‐coding transcripts. Molecular Cell, 46(5), 674–690. 10.1016/j.molcel.2012.05.021 PubMed DOI

Bartosovic, M. , Molares, H. C. , Gregorova, P. , Hrossova, D. , Kudla, G. , & Vanacova, S. (2017). N6‐methyladenosine demethylase FTO targets pre‐mRNAs and regulates alternative splicing and 3′‐end processing. Nucleic Acids Research. 10.1093/nar/gkx778 PubMed DOI PMC

Batista, P. J. , Molinie, B. , Wang, J. , Qu, K. , Zhang, J. , Li, L. , … Chang, H. Y. (2014). m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15(6), 707–719. 10.1016/j.stem.2014.09.019 PubMed DOI PMC

Belanger, F. , Stepinski, J. , Darzynkiewicz, E. , & Pelletier, J. (2010). Characterization of hMTr1, a human Cap1 2′‐O‐ribose methyltransferase. Journal of Biological Chemistry, 285(43), 33037–33044. 10.1074/jbc.M110.155283 PubMed DOI PMC

Boccaletto, P. , Machnicka, M. A. , Purta, E. , Piatkowski, P. , Baginski, B. , Wirecki, T. K. , … Bujnicki, J. M. (2018). MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Research, 46(D1), D303–D307. 10.1093/nar/gkx1030 PubMed DOI PMC

Bringmann, P. , & Luhrmann, R. (1987). Antibodies specific for N6‐methyladenosine react with intact snRNPs U2 and U4/U6. FEBS Letters, 213(2), 309–315. PubMed

Camper, S. A. , Albers, R. J. , Coward, J. K. , & Rottman, F. M. (1984). Effect of undermethylation on mRNA cytoplasmic appearance and half‐life. Molecular and Cellular Biology, 4(3), 538–543. PubMed PMC

Chen, K. , Lu, Z. , Wang, X. , Fu, Y. , Luo, G. Z. , Liu, N. , … He, C. (2015). High‐resolution N(6)‐methyladenosine (m(6)A) map using photo‐crosslinking‐assisted m(6) A sequencing. Angewandte Chemie, 54(5), 1587–1590. 10.1002/anie.201410647 PubMed DOI PMC

Chen, T. , Hao, Y. J. , Zhang, Y. , Li, M. M. , Wang, M. , Han, W. , … Zhou, Q. (2015). m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell, 16(3), 289–301. 10.1016/j.stem.2015.01.016 PubMed DOI

Clark, W. C. , Evans, M. E. , Dominissini, D. , Zheng, G. , & Pan, T. (2016). tRNA base methylation identification and quantification via high‐throughput sequencing. RNA, 22(11), 1771–1784. 10.1261/rna.056531.116 PubMed DOI PMC

Cozen, A. E. , Quartley, E. , Holmes, A. D. , Hrabeta‐Robinson, E. , Phizicky, E. M. , & Lowe, T. M. (2015). ARM‐seq: AlkB‐facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nature Methods, 12(9), 879–884. 10.1038/nmeth.3508 PubMed DOI PMC

Cui, Q. , Shi, H. , Ye, P. , Li, L. , Qu, Q. , Sun, G. , … Shi, Y. (2017). m6A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells. Cell Reports, 18(11), 2622–2634. 10.1016/j.celrep.2017.02.059 PubMed DOI PMC

Daffis, S. , Szretter, K. J. , Schriewer, J. , Li, J. , Youn, S. , Errett, J. , … Diamond, M. S. (2010). 2′‐O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468(7322), 452–456. 10.1038/nature09489 PubMed DOI PMC

David, R. , Burgess, A. , Parker, B. , Li, J. , Pulsford, K. , Sibbritt, T. , … Searle, I. R. (2017). Transcriptome‐wide mapping of RNA 5‐methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell, 29(3), 445–460. 10.1105/tpc.16.00751 PubMed DOI PMC

Delatte, B. , Wang, F. , Ngoc, L. V. , Collignon, E. , Bonvin, E. , Deplus, R. , … Fuks, F. (2016). RNA biochemistry. Transcriptome‐wide distribution and function of RNA hydroxymethylcytosine. Science, 351(6270), 282–285. 10.1126/science.aac5253 PubMed DOI

Desrosiers, R. , Friderici, K. , & Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proceedings of the National Academy of Sciences of the United States of America, 71(10), 3971–3975. PubMed PMC

Dominissini, D. , Moshitch‐Moshkovitz, S. , Schwartz, S. , Salmon‐Divon, M. , Ungar, L. , Osenberg, S. , … Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq. Nature, 485(7397), 201–206. 10.1038/nature11112 PubMed DOI

Dominissini, D. , Nachtergaele, S. , Moshitch‐Moshkovitz, S. , Peer, E. , Kol, N. , Ben‐Haim, M. S. , … He, C. (2016). The dynamic N(1)‐methyladenosine methylome in eukaryotic messenger RNA. Nature, 530(7591), 441–446. 10.1038/nature16998 PubMed DOI PMC

Du, H. , Zhao, Y. , He, J. , Zhang, Y. , Xi, H. , Liu, M. , … Wu, L. (2016). YTHDF2 destabilizes m(6)A‐containing RNA through direct recruitment of the CCR4‐NOT deadenylase complex. Nature Communications, 7, 12626 10.1038/ncomms12626 PubMed DOI PMC

Dubin, D. T. , & Taylor, R. H. (1975). The methylation state of poly A‐containing messenger RNA from cultured hamster cells. Nucleic Acids Research, 2(10), 1653–1668. PubMed PMC

Edmonds, M. , Vaughan, M. H., Jr. , & Nakazato, H. (1971). Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly‐labeled polyribosomal RNA of HeLa cells: Possible evidence for a precursor relationship. Proceedings of the National Academy of Sciences of the United States of America, 68(6), 1336–1340. PubMed PMC

Fedeles, B. I. , Singh, V. , Delaney, J. C. , Li, D. , & Essigmann, J. M. (2015). The AlkB family of Fe(II)/alpha‐ketoglutarate‐dependent dioxygenases: Repairing nucleic acid alkylation damage and beyond. Journal of Biological Chemistry, 290(34), 20734–20742. 10.1074/jbc.R115.656462 PubMed DOI PMC

Finkel, D. , & Groner, Y. (1983). Methylations of adenosine residues (m6A) in pre‐mRNA are important for formation of late simian virus 40 mRNAs. Virology, 131(2), 409–425. PubMed

Fu, L. , Guerrero, C. R. , Zhong, N. , Amato, N. J. , Liu, Y. , Liu, S. , … Wang, Y. (2014). Tet‐mediated formation of 5‐hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 136(33), 11582–11585. 10.1021/ja505305z PubMed DOI PMC

Fu, Y. , Dominissini, D. , Rechavi, G. , & He, C. (2014). Gene expression regulation mediated through reversible m(6)A RNA methylation. Nature Reviews. Genetics, 15(5), 293–306. 10.1038/nrg3724 PubMed DOI

Fu, Y. , Jia, G. , Pang, X. , Wang, R. N. , Wang, X. , Li, C. J. , … He, C. (2013). FTO‐mediated formation of N6‐hydroxymethyladenosine and N6‐formyladenosine in mammalian RNA. Nature Communications, 4, 1798 10.1038/ncomms2822 PubMed DOI PMC

Fustin, J. M. , Doi, M. , Yamaguchi, Y. , Hida, H. , Nishimura, S. , Yoshida, M. , … Okamura, H. (2013). RNA‐methylation‐dependent RNA processing controls the speed of the circadian clock. Cell, 155(4), 793–806. 10.1016/j.cell.2013.10.026 PubMed DOI

Gerken, T. , Girard, C. A. , Tung, Y. C. , Webby, C. J. , Saudek, V. , Hewitson, K. S. , … Schofield, C. J. (2007). The obesity‐associated FTO gene encodes a 2‐oxoglutarate‐dependent nucleic acid demethylase. Science, 318(5855), 1469–1472. 10.1126/science.1151710 PubMed DOI PMC

Geula, S. , Moshitch‐Moshkovitz, S. , Dominissini, D. , Mansour, A. A. , Kol, N. , Salmon‐Divon, M. , … Hanna, J. H. (2015). Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 347(6225), 1002–1006. 10.1126/science.1261417 PubMed DOI

Gruber, A. J. , Schmidt, R. , Gruber, A. R. , Martin, G. , Ghosh, S. , Belmadani, M. , … Zavolan, M. (2016). A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Research, 26(8), 1145–1159. 10.1101/gr.202432.115 PubMed DOI PMC

Gulati, P. , Avezov, E. , Ma, M. , Antrobus, R. , Lehner, P. , O'Rahilly, S. , & Yeo, G. S. (2014). Fat mass and obesity‐related (FTO) shuttles between the nucleus and cytoplasm. Bioscience Reports, 34(5), 621–628. 10.1042/BSR20140111 PubMed DOI PMC

Harper, J. E. , Miceli, S. M. , Roberts, R. J. , & Manley, J. L. (1990). Sequence specificity of the human mRNA N6‐adenosine methylase in vitro. Nucleic Acids Research, 18(19), 5735–5741. PubMed PMC

Haussmann, I. U. , Bodi, Z. , Sanchez‐Moran, E. , Mongan, N. P. , Archer, N. , Fray, R. G. , & Soller, M. (2016). m6A potentiates Sxl alternative pre‐mRNA splicing for robust Drosophila sex determination. Nature, 540(7632), 301–304. 10.1038/nature20577 PubMed DOI

Helm, M. , Giege, R. , & Florentz, C. (1999). A Watson‐Crick base‐pair‐disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry, 38(40), 13338–13346. PubMed

Helm, M. , & Motorin, Y. (2017). Detecting RNA modifications in the epitranscriptome: Predict and validate. Nature Reviews. Genetics, 18(5), 275–291. 10.1038/nrg.2016.169 PubMed DOI

Hocine, S. , Singer, R. H. , & Grunwald, D. (2010). RNA processing and export. Cold Spring Harbor Perspectives in Biology, 2(12), a000752 10.1101/cshperspect.a000752 PubMed DOI PMC

Hoernes, T. P. , & Erlacher, M. D. (2017). Translating the epitranscriptome. WIREs RNA, 8(1), e1375 10.1002/wrna.1375 PubMed DOI PMC

Hsu, P. J. , Zhu, Y. , Ma, H. , Guo, Y. , Shi, X. , Liu, Y. , … He, C. (2017). Ythdc2 is an N6‐methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 27(9), 1115–1127. 10.1038/cr.2017.99 PubMed DOI PMC

Hussain, S. , Aleksic, J. , Blanco, S. , Dietmann, S. , & Frye, M. (2013). Characterizing 5‐methylcytosine in the mammalian epitranscriptome. Genome Biology, 14(11), 215 10.1186/gb4143 PubMed DOI PMC

Hussain, S. , Sajini, A. A. , Blanco, S. , Dietmann, S. , Lombard, P. , Sugimoto, Y. , … Frye, M. (2013). NSun2‐mediated cytosine‐5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Reports, 4(2), 255–261. 10.1016/j.celrep.2013.06.029 PubMed DOI PMC

Ivanova, I. , Much, C. , Di Giacomo, M. , Azzi, C. , Morgan, M. , Moreira, P. N. , … O'Carroll, D. (2017). The RNA m6A reader YTHDF2 is essential for the post‐transcriptional regulation of the maternal transcriptome and oocyte competence. Molecular Cell, 67(6), 1059, e1054–1067. 10.1016/j.molcel.2017.08.003 PubMed DOI PMC

Iwanami, Y. , & Brown, G. M. (1968a). Methylated bases of ribosomal ribonucleic acid from HeLa cells. Archives of Biochemistry and Biophysics, 126(1), 8–15. PubMed

Iwanami, Y. , & Brown, G. M. (1968b). Methylated bases of transfer ribonucleic acid from HeLa and L cells. Archives of Biochemistry and Biophysics, 124(1), 472–482. PubMed

Jaffrey, S. R. , & Kharas, M. G. (2017). Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Medicine, 9(1), 2 10.1186/s13073-016-0395-8 PubMed DOI PMC

Jia, G. , Fu, Y. , Zhao, X. , Dai, Q. , Zheng, G. , Yang, Y. , … He, C. (2011). N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO. Nature Chemical Biology, 7(12), 885–887. 10.1038/nchembio.687 PubMed DOI PMC

Jia, G. , Yang, C. G. , Yang, S. , Jian, X. , Yi, C. , Zhou, Z. , & He, C. (2008). Oxidative demethylation of 3‐methylthymine and 3‐methyluracil in single‐stranded DNA and RNA by mouse and human FTO. FEBS Letters, 582(23–24), 3313–3319. 10.1016/j.febslet.2008.08.019 PubMed DOI PMC

Ke, S. , Alemu, E. A. , Mertens, C. , Gantman, E. C. , Fak, J. J. , Mele, A. , … Darnell, R. B. (2015). A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes & Development, 29(19), 2037–2053. 10.1101/gad.269415.115 PubMed DOI PMC

Ke, S. , Pandya‐Jones, A. , Saito, Y. , Fak, J. J. , Vagbo, C. B. , Geula, S. , … Darnell, R. B. (2017). m6A mRNA modifications are deposited in nascent pre‐mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes & Development, 31(10), 990–1006. 10.1101/gad.301036.117 PubMed DOI PMC

Khoddami, V. , & Cairns, B. R. (2013). Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nature Biotechnology, 31(5), 458–464. 10.1038/nbt.2566 PubMed DOI PMC

Knuckles, P. , Carl, S. H. , Musheev, M. , Niehrs, C. , Wenger, A. , & Buhler, M. (2017). RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nature Structural & Molecular Biology, 24(7), 561–569. 10.1038/nsmb.3419 PubMed DOI

Knuckles, P. , Lence, T. , Haussmann, I. U. , Jacob, D. , Kreim, N. , Carl, S. H. , … Roignant, J. Y. (2018). Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA‐binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes & Development, 32(5–6), 415–429. 10.1101/gad.309146.117 PubMed DOI PMC

Kohli, R. M. , & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472), 472–479. 10.1038/nature12750 PubMed DOI PMC

Legrand, C. , Tuorto, F. , Hartmann, M. , Liebers, R. , Jacob, D. , Helm, M. , & Lyko, F. (2017). Statistically robust methylation calling for whole‐transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Research, 27(9), 1589–1596. 10.1101/gr.210666.116 PubMed DOI PMC

Lenasi, T. , & Barboric, M. (2013). Mutual relationships between transcription and pre‐mRNA processing in the synthesis of mRNA. WIREs RNA, 4(2), 139–154. 10.1002/wrna.1148 PubMed DOI

Lence, T. , Akhtar, J. , Bayer, M. , Schmid, K. , Spindler, L. , Ho, C. H. , … Roignant, J. Y. (2016). m6A modulates neuronal functions and sex determination in Drosophila . Nature, 540(7632), 242–247. 10.1038/nature20568 PubMed DOI

Li, A. , Chen, Y. S. , Ping, X. L. , Yang, X. , Xiao, W. , Yang, Y. , … Yang, Y. G. (2017). Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Research, 27(3), 444–447. 10.1038/cr.2017.10 PubMed DOI PMC

Li, X. , Xiong, X. , Wang, K. , Wang, L. , Shu, X. , Ma, S. , & Yi, C. (2016). Transcriptome‐wide mapping reveals reversible and dynamic N(1)‐methyladenosine methylome. Nature Chemical Biology, 12(5), 311–316. 10.1038/nchembio.2040 PubMed DOI

Li, X. , Xiong, X. , & Yi, C. (2016). Epitranscriptome sequencing technologies: Decoding RNA modifications. Nature Methods, 14(1), 23–31. 10.1038/nmeth.4110 PubMed DOI

Li, X. , Xiong, X. , Zhang, M. , Wang, K. , Chen, Y. , Zhou, J. , … Yi, C. (2017). Base‐resolution mapping reveals distinct m(1)A methylome in nuclear‐ and mitochondrial‐encoded transcripts. Molecular Cell, 68(5), 993–1005 e1009. 10.1016/j.molcel.2017.10.019 PubMed DOI PMC

Li, Z. , Weng, H. , Su, R. , Weng, X. , Zuo, Z. , Li, C. , … Chen, J. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a N6‐methyladenosine RNA demethylase. Cancer Cell, 31(1), 127–141. 10.1016/j.ccell.2016.11.017 PubMed DOI PMC

Lin, S. , Choe, J. , Du, P. , Triboulet, R. , & Gregory, R. I. (2016). The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Molecular Cell, 62(3), 335–345. 10.1016/j.molcel.2016.03.021 PubMed DOI PMC

Linder, B. , Grozhik, A. V. , Olarerin‐George, A. O. , Meydan, C. , Mason, C. E. , & Jaffrey, S. R. (2015). Single‐nucleotide‐resolution mapping of m6A and m6Am throughout the transcriptome. Nature Methods, 12(8), 767–772. 10.1038/nmeth.3453 PubMed DOI PMC

Liu, J. , Yue, Y. , Han, D. , Wang, X. , Fu, Y. , Zhang, L. , … He, C. (2014). A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation. Nature Chemical Biology, 10(2), 93–95. 10.1038/nchembio.1432 PubMed DOI PMC

Liu, N. , Dai, Q. , Zheng, G. , He, C. , Parisien, M. , & Pan, T. (2015). N(6)‐methyladenosine‐dependent RNA structural switches regulate RNA‐protein interactions. Nature, 518(7540), 560–564. 10.1038/nature14234 PubMed DOI PMC

Liu, N. , Parisien, M. , Dai, Q. , Zheng, G. , He, C. , & Pan, T. (2013). Probing N6‐methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA, 19(12), 1848–1856. 10.1261/rna.041178.113 PubMed DOI PMC

Liu, N. , Zhou, K. I. , Parisien, M. , Dai, Q. , Diatchenko, L. , & Pan, T. (2017). N6‐methyladenosine alters RNA structure to regulate binding of a low‐complexity protein. Nucleic Acids Research, 45(10), 6051–6063. 10.1093/nar/gkx141 PubMed DOI PMC

Liu, S. R. , Hu, C. G. , & Zhang, J. Z. (2016). Regulatory effects of cotranscriptional RNA structure formation and transitions. WIREs RNA, 7(5), 562–574. 10.1002/wrna.1350 PubMed DOI

Martinez‐Perez, M. , Aparicio, F. , Lopez‐Gresa, M. P. , Belles, J. M. , Sanchez‐Navarro, J. A. , & Pallas, V. (2017). Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10755–10760. 10.1073/pnas.1703139114 PubMed DOI PMC

Mauer, J. , Luo, X. , Blanjoie, A. , Jiao, X. , Grozhik, A. V. , Patil, D. P. , … Jaffrey, S. R. (2017). Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 541(7637), 371–375. 10.1038/nature21022 PubMed DOI PMC

Merkestein, M. , Laber, S. , McMurray, F. , Andrew, D. , Sachse, G. , Sanderson, J. , … Cox, R. D. (2015). FTO influences adipogenesis by regulating mitotic clonal expansion. Nature Communications, 6, 6792 10.1038/ncomms7792 PubMed DOI PMC

Meyer, K. D. , Patil, D. P. , Zhou, J. , Zinoviev, A. , Skabkin, M. A. , Elemento, O. , … Jaffrey, S. R. (2015). 5′ UTR m(6)A promotes cap‐independent translation. Cell, 163(4), 999–1010. 10.1016/j.cell.2015.10.012 PubMed DOI PMC

Meyer, K. D. , Saletore, Y. , Zumbo, P. , Elemento, O. , Mason, C. E. , & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149(7), 1635–1646. 10.1016/j.cell.2012.05.003 PubMed DOI PMC

Molinie, B. , Wang, J. , Lim, K. S. , Hillebrand, R. , Lu, Z. X. , Van Wittenberghe, N. , … Giallourakis, C. C. (2016). m(6)A‐LAIC‐seq reveals the census and complexity of the m(6)A epitranscriptome. Nature Methods, 13(8), 692–698. 10.1038/nmeth.3898 PubMed DOI PMC

Muthukrishnan, S. , Both, G. W. , Furuichi, Y. , & Shatkin, A. J. (1975). 5′‐Terminal 7‐methylguanosine in eukaryotic mRNA is required for translation. Nature, 255(5503), 33–37. PubMed

Nilsen, T. W. , & Graveley, B. R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature, 463(7280), 457–463. 10.1038/nature08909 PubMed DOI PMC

Ougland, R. , Zhang, C. M. , Liiv, A. , Johansen, R. F. , Seeberg, E. , Hou, Y. M. , … Falnes, P. O. (2004). AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Molecular Cell, 16(1), 107–116. 10.1016/j.molcel.2004.09.002 PubMed DOI

Patil, D. P. , Chen, C. K. , Pickering, B. F. , Chow, A. , Jackson, C. , Guttman, M. , & Jaffrey, S. R. (2016). m(6)A RNA methylation promotes XIST‐mediated transcriptional repression. Nature, 537(7620), 369–373. 10.1038/nature19342 PubMed DOI PMC

Pendleton, K. E. , Chen, B. , Liu, K. , Hunter, O. V. , Xie, Y. , Tu, B. P. , & Conrad, N. K. (2017). The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 169(5), 824–835 e814. 10.1016/j.cell.2017.05.003 PubMed DOI PMC

Perry, R. P. , & Kelley, D. E. (1974). Existence of methylated messenger‐RNA in mouse L cells. Cell, 1(1), 37–42. 10.1016/0092-8674(74)90153-6 DOI

Ping, X. L. , Sun, B. F. , Wang, L. , Xiao, W. , Yang, X. , Wang, W. J. , … Yang, Y. G. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase. Cell Research, 24(2), 177–189. 10.1038/cr.2014.3 PubMed DOI PMC

Ramanathan, A. , Robb, G. B. , & Chan, S. H. (2016). mRNA capping: Biological functions and applications. Nucleic Acids Research, 44(16), 7511–7526. 10.1093/nar/gkw551 PubMed DOI PMC

Roundtree, I. A. , Luo, G. Z. , Zhang, Z. , Wang, X. , Zhou, T. , Cui, Y. , … He, C. (2017). YTHDC1 mediates nuclear export of N6‐methyladenosine methylated mRNAs. eLife, 6 10.7554/eLife.31311 PubMed DOI PMC

Ruzicka, K. , Zhang, M. , Campilho, A. , Bodi, Z. , Kashif, M. , Saleh, M. , … Fray, R. G. (2017). Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. The New Phytologist, 215(1), 157–172. 10.1111/nph.14586 PubMed DOI PMC

Safra, M. , Sas‐Chen, A. , Nir, R. , Winkler, R. , Nachshon, A. , Bar‐Yaacov, D. , … Schwartz, S. (2017). The m1A landscape on cytosolic and mitochondrial mRNA at single‐base resolution. Nature, 551(7679), 251–255. 10.1038/nature24456 PubMed DOI

Salditt‐Georgieff, M. , Jelinek, W. , Darnell, J. E. , Furuichi, Y. , Morgan, M. , & Shatkin, A. (1976). Methyl labeling of HeLa cell hnRNA: A comparison with mRNA. Cell, 7(2), 227–237. PubMed

Saneyoshi, M. , Harada, F. , & Nishimura, S. (1969). Isolation and characterization of N6‐methyladenosine from Escherichia coli valine transfer RNA. Biochimica et Biophysica Acta, 190(2), 264–273. PubMed

Schwartz, S. , Agarwala, S. D. , Mumbach, M. R. , Jovanovic, M. , Mertins, P. , Shishkin, A. , … Regev, A. (2013). High‐resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell, 155(6), 1409–1421. 10.1016/j.cell.2013.10.047 PubMed DOI PMC

Schwartz, S. , Mumbach, M. R. , Jovanovic, M. , Wang, T. , Maciag, K. , Bushkin, G. G. , … Regev, A. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Reports, 8(1), 284–296. 10.1016/j.celrep.2014.05.048 PubMed DOI PMC

Shimba, S. , Bokar, J. A. , Rottman, F. , & Reddy, R. (1995). Accurate and efficient N‐6‐adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro. Nucleic Acids Research, 23(13), 2421–2426. PubMed PMC

Sledz, P. , & Jinek, M. (2016). Structural insights into the molecular mechanism of the m(6)A writer complex. eLife, 5, e18434 10.7554/eLife.18434 PubMed DOI PMC

Slobodin, B. , Han, R. , Calderone, V. , Vrielink, J. A. , Loayza‐Puch, F. , Elkon, R. , & Agami, R. (2017). Transcription impacts the efficiency of mRNA translation via co‐transcriptional N6‐adenosine methylation. Cell, 169(2), 326–337 e312. 10.1016/j.cell.2017.03.031 PubMed DOI PMC

Spitale, R. C. , Flynn, R. A. , Zhang, Q. C. , Crisalli, P. , Lee, B. , Jung, J. W. , … Chang, H. Y. (2015). Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519(7544), 486–490. 10.1038/nature14263 PubMed DOI PMC

Squires, J. E. , Patel, H. R. , Nousch, M. , Sibbritt, T. , Humphreys, D. T. , Parker, B. J. , … Preiss, T. (2012). Widespread occurrence of 5‐methylcytosine in human coding and non‐coding RNA. Nucleic Acids Research, 40(11), 5023–5033. 10.1093/nar/gks144 PubMed DOI PMC

Stoltzfus, C. M. , & Dane, R. W. (1982). Accumulation of spliced avian retrovirus mRNA is inhibited in S‐adenosylmethionine‐depleted chicken embryo fibroblasts. Journal of Virology, 42(3), 918–931. PubMed PMC

Sundheim, O. , Vagbo, C. B. , Bjoras, M. , Sousa, M. M. , Talstad, V. , Aas, P. A. , … Slupphaug, G. (2006). Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO Journal, 25(14), 3389–3397. 10.1038/sj.emboj.7601219 PubMed DOI PMC

Tang, C. , Klukovich, R. , Peng, H. , Wang, Z. , Yu, T. , Zhang, Y. , … Yan, W. (2018). ALKBH5‐dependent m6A demethylation controls splicing and stability of long 3′‐UTR mRNAs in male germ cells. Proceedings of the National Academy of Sciences of the United States of America, 115(2), E325–E333. 10.1073/pnas.1717794115 PubMed DOI PMC

Theler, D. , Dominguez, C. , Blatter, M. , Boudet, J. , & Allain, F. H. (2014). Solution structure of the YTH domain in complex with N6‐methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Research, 42(22), 13911–13919. 10.1093/nar/gku1116 PubMed DOI PMC

Tian, B. , Hu, J. , Zhang, H. , & Lutz, C. S. (2005). A large‐scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Research, 33(1), 201–212. 10.1093/nar/gki158 PubMed DOI PMC

Tirumuru, N. , Zhao, B. S. , Lu, W. , Lu, Z. , He, C. , & Wu, L. (2016). N(6)‐methyladenosine of HIV‐1 RNA regulates viral infection and HIV‐1 Gag protein expression. Elife, 5 10.7554/eLife.15528 PubMed DOI PMC

Topisirovic, I. , Svitkin, Y. V. , Sonenberg, N. , & Shatkin, A. J. (2011). Cap and cap‐binding proteins in the control of gene expression. WIREs RNA, 2(2), 277–298. 10.1002/wrna.52 PubMed DOI

Tserovski, L. , Marchand, V. , Hauenschild, R. , Blanloeil‐Oillo, F. , Helm, M. , & Motorin, Y. (2016). High‐throughput sequencing for 1‐methyladenosine (m(1)A) mapping in RNA. Methods, 107, 110–121. 10.1016/j.ymeth.2016.02.012 PubMed DOI

Wang, P. , Doxtader, K. A. , & Nam, Y. (2016). Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Molecular Cell, 63(2), 306–317. 10.1016/j.molcel.2016.05.041 PubMed DOI PMC

Wang, X. , Feng, J. , Xue, Y. , Guan, Z. , Zhang, D. , Liu, Z. , … Yin, P. (2016). Structural basis of N(6)‐adenosine methylation by the METTL3–METTL14 complex. Nature, 534(7608), 575–578. 10.1038/nature18298 PubMed DOI

Wang, X. , Lu, Z. , Gomez, A. , Hon, G. C. , Yue, Y. , Han, D. , … He, C. (2014). N6‐methyladenosine‐dependent regulation of messenger RNA stability. Nature, 505(7481), 117–120. 10.1038/nature12730 PubMed DOI PMC

Wang, X. , Zhao, B. S. , Roundtree, I. A. , Lu, Z. , Han, D. , Ma, H. , … He, C. (2015). N(6)‐methyladenosine modulates messenger RNA translation efficiency. Cell, 161(6), 1388–1399. 10.1016/j.cell.2015.05.014 PubMed DOI PMC

Wang, Y. , Li, Y. , Toth, J. I. , Petroski, M. D. , Zhang, Z. , & Zhao, J. C. (2014). N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nature Cell Biology, 16(2), 191–198. 10.1038/ncb2902 PubMed DOI PMC

Warda, A. S. , Kretschmer, J. , Hackert, P. , Lenz, C. , Urlaub, H. , Hobartner, C. , … Bohnsack, M. T. (2017). Human METTL16 is a N6‐methyladenosine (m6A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs. EMBO Reports, 18, 2004–2014. https://doi.org/10.15252/embr.201744940 PubMed DOI PMC

Wei, C. , Gershowitz, A. , & Moss, B. (1975a). N6, O2′‐dimethyladenosine a novel methylated ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature, 257(5523), 251–253. PubMed

Wei, C. M. , Gershowitz, A. , & Moss, B. (1975b). Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell, 4(4), 379–386. PubMed

Wei, C. M. , Gershowitz, A. , & Moss, B. (1976). 5′‐Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry, 15(2), 397–401. PubMed

Wei, C. M. , & Moss, B. (1975). Methylated nucleotides block 5′‐terminus of vaccinia virus messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 72(1), 318–322. PubMed PMC

Wei, C. M. , & Moss, B. (1977). Nucleotide sequences at the N6‐methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry, 16(8), 1672–1676. PubMed

Werner, M. , Purta, E. , Kaminska, K. H. , Cymerman, I. A. , Campbell, D. A. , Mittra, B. , … Bujnicki, J. M. (2011). 2′‐O‐ribose methylation of cap2 in human: Function and evolution in a horizontally mobile family. Nucleic Acids Research, 39(11), 4756–4768. 10.1093/nar/gkr038 PubMed DOI PMC

Wilusz, J. E. , Freier, S. M. , & Spector, D. L. (2008). 3′ end processing of a long nuclear‐retained noncoding RNA yields a tRNA‐like cytoplasmic RNA. Cell, 135(5), 919–932. 10.1016/j.cell.2008.10.012 PubMed DOI PMC

Wojtas, M. N. , Pandey, R. R. , Mendel, M. , Homolka, D. , Sachidanandam, R. , & Pillai, R. S. (2017). Regulation of m(6)A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Molecular Cell, 68(2), 374–387 e312. 10.1016/j.molcel.2017.09.021 PubMed DOI

Xiang, Y. , Laurent, B. , Hsu, C. H. , Nachtergaele, S. , Lu, Z. , Sheng, W. , … Shi, Y. (2017). Corrigendum: RNA m(6)A methylation regulates the ultraviolet‐induced DNA damage response. Nature, 552(7685), 430 10.1038/nature24007 PubMed DOI

Xiao, W. , Adhikari, S. , Dahal, U. , Chen, Y. S. , Hao, Y. J. , Sun, B. F. , … Yang, Y. G. (2016). Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Molecular Cell, 61(4), 507–519. 10.1016/j.molcel.2016.01.012 PubMed DOI

Xu, L. , Liu, X. , Sheng, N. , Oo, K. S. , Liang, J. , Chionh, Y. H. , … Fu, X. Y. (2017). Three distinct 3‐methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. Journal of Biological Chemistry, 292(35), 14695–14703. 10.1074/jbc.M117.798298 PubMed DOI PMC

Yang, X. , Yang, Y. , Sun, B. F. , Chen, Y. S. , Xu, J. W. , Lai, W. Y. , … Yang, Y. G. (2017). 5‐Methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 27(5), 606–625. 10.1038/cr.2017.55 PubMed DOI PMC

Yang, Y. , Fan, X. , Mao, M. , Song, X. , Wu, P. , Zhang, Y. , … Wang, Z. (2017). Extensive translation of circular RNAs driven by N6‐methyladenosine. Cell Research, 27(5), 626–641. 10.1038/cr.2017.31 PubMed DOI PMC

Yue, Y. , Liu, J. , Cui, X. , Cao, J. , Luo, G. , Zhang, Z. , … Liu, J. (2018). VIRMA mediates preferential m(6)A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discovery, 4, 10 10.1038/s41421-018-0019-0 PubMed DOI PMC

Zhang, G. , Huang, H. , Liu, D. , Cheng, Y. , Liu, X. , Zhang, W. , … Chen, D. (2015). N6‐methyladenine DNA modification in Drosophila . Cell, 161(4), 893–906. 10.1016/j.cell.2015.04.018 PubMed DOI

Zhang, S. , Zhao, B. S. , Zhou, A. , Lin, K. , Zheng, S. , Lu, Z. , … Huang, S. (2017). m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem‐like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell, 31(4), 591–606 e596. 10.1016/j.ccell.2017.02.013 PubMed DOI PMC

Zhao, B. S. , Wang, X. , Beadell, A. V. , Lu, Z. , Shi, H. , Kuuspalu, A. , … He, C. (2017). m6A‐dependent maternal mRNA clearance facilitates zebrafish maternal‐to‐zygotic transition. Nature, 542(7642), 475–478. 10.1038/nature21355 PubMed DOI PMC

Zhao, X. , Yang, Y. , Sun, B. F. , Shi, Y. , Yang, X. , Xiao, W. , … Yang, Y. G. (2014). FTO‐dependent demethylation of N6‐methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 24(12), 1403–1419. 10.1038/cr.2014.151 PubMed DOI PMC

Zheng, G. , Dahl, J. A. , Niu, Y. , Fedorcsak, P. , Huang, C. M. , Li, C. J. , … He, C. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49(1), 18–29. 10.1016/j.molcel.2012.10.015 PubMed DOI PMC

Zhong, S. , Li, H. , Bodi, Z. , Button, J. , Vespa, L. , Herzog, M. , & Fray, R. G. (2008). MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex‐specific splicing factor. Plant Cell, 20(5), 1278–1288. 10.1105/tpc.108.058883 PubMed DOI PMC

Zhou, J. , Wan, J. , Gao, X. , Zhang, X. , Jaffrey, S. R. , & Qian, S. B. (2015). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526(7574), 591–594. 10.1038/nature15377 PubMed DOI PMC

Zhu, T. , Roundtree, I. A. , Wang, P. , Wang, X. , Wang, L. , Sun, C. , … Xu, Y. (2014). Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6‐methyladenosine. Cell Research, 24(12), 1493–1496. 10.1038/cr.2014.152 PubMed DOI PMC

Zust, R. , Cervantes‐Barragan, L. , Habjan, M. , Maier, R. , Neuman, B. W. , Ziebuhr, J. , … Thiel, V. (2011). Ribose 2′‐O‐methylation provides a molecular signature for the distinction of self and non‐self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 12(2), 137–143. 10.1038/ni.1979 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...