Seasonality and weather conditions jointly drive flight activity patterns of aquatic and terrestrial chironomids
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
14-29857S
Grantová Agentura České Republiky - International
GAJU 158/2016/P
Grantová agentura Jihočeské univerzity - International
PubMed
29921270
PubMed Central
PMC6006739
DOI
10.1186/s12898-018-0175-y
PII: 10.1186/s12898-018-0175-y
Knihovny.cz E-zdroje
- Klíčová slova
- Aquatic insects, Collinearity, Dispersal, Environmental conditions, Seasonality,
- MeSH
- Chironomidae fyziologie MeSH
- cirkadiánní rytmus MeSH
- let zvířat * MeSH
- počasí * MeSH
- populační dynamika MeSH
- roční období MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Chironomids, a major invertebrate taxon in many standing freshwaters, rely on adult flight to reach new suitable sites, yet the impact of weather conditions on their flight activity is little understood. We investigated diel and seasonal flight activity patterns of aquatic and terrestrial chironomids in a reclaimed sandpit area and analysed how weather conditions and seasonality influenced their total abundance and species composition. RESULTS: Air temperature, relative humidity, wind speed, and air pressure significantly affected total flight activity of both groups, but not in the same way. We identified an intermediate temperature and humidity optimum for the flight activity of terrestrial chironomids, which contrasted with weaker, timescale-dependent relationships in aquatic species. Flight activity of both groups further declined with wind speed and increased with air pressure. Observed flight patterns also varied in time on both daily and seasonal scale. Flight activity of both groups peaked in the evenings after accounting for weather conditions but, surprisingly, aquatic and terrestrial chironomids used partly alternating time windows for dispersal during the season. This may be driven by different seasonal trends of key environmental variables in larval habitats and hence implies that species phenologies and conditions experienced by chironomid larvae (and probably other aquatic insects with short-lived adults) influence adult flight patterns more than weather conditions. CONCLUSIONS: Our results provide detailed insights into the drivers of chironomid flight activity and highlight the methodological challenges arising from the inherent collinearity of weather characteristics and their diurnal and seasonal cycles.
Zobrazit více v PubMed
Clobert J, Baquette M, Benton TG, Bullock JM. Dispersal ecology and evolution. London: Oxford University Press; 2012.
Bilton DT, Freeland JR, Okamura B. Dispersal in freshwater invertebrates. Annu Rev Ecol Syst. 2001;32:159–181. doi: 10.1146/annurev.ecolsys.32.081501.114016. DOI
Rundle SD, Bilton DT, Foggo A. By wind, wings or water: body size, dispersal and range size in aquatic invertebrates. In: Hildrew AG, Raffaelli DG, Edmonds-Brown R, editors. Body size: the structure and function of aquatic ecosystems. Cambridge: Cambridge University Press; 2007. pp. 186–209.
Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev Camb Philos Soc. 2005;80:205–225. doi: 10.1017/S1464793104006645. PubMed DOI
Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G. A “polarisation sun-dial” dictates the optimal time of day for dispersal by flying aquatic insects. Freshw Biol. 2006;51:1341–1350. doi: 10.1111/j.1365-2427.2006.01576.x. DOI
Csabai Z, Kálmán Z, Szivák I, Boda P. Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons. Naturwissenschaften. 2012;99:751–765. doi: 10.1007/s00114-012-0957-6. PubMed DOI
Boda P, Csabai Z. When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia. 2012;703:133–147. doi: 10.1007/s10750-012-1350-3. DOI
Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23. doi: 10.1146/annurev-ecolsys-110411-160340. DOI
Kuussaari M, Rytteri S, Heikkinen RK, Heliölä J, von Bagh P. Weather explains high annual variation in butterfly dispersal. Proc R Soc B Biol Sci. 2016;283:20160413. doi: 10.1098/rspb.2016.0413. PubMed DOI PMC
Willmer PG. Hygrothermal determinants of insect activity patterns: the Diptera of water-lily leaves. Ecol Entomol. 1982;7:221–231. doi: 10.1111/j.1365-2311.1982.tb00661.x. DOI
Waringer JA. Phenology and the influence of meteorological parameters on the catching success of light-trapping for Trichoptera. Freshw Biol. 1991;25:307–319. doi: 10.1111/j.1365-2427.1991.tb00493.x. DOI
Briers RA, Cariss HM, Gee JHR. Flight activity of adult stoneflies in relation to weather. Ecol Entomol. 2003;28:31–40. doi: 10.1046/j.1365-2311.2003.00480.x. DOI
Landin J, Stark E. On flight tresholds for temperature and wind velocity, 24-hour flight periodicity and migration of the water beetle Helophorus brevipalpis Bedel (Col. Hydrophilidae) ZOON Suppl. 1973;1:105–114.
Csabai Z, Boda P. Effect of the wind speed on the migration activity of aquatic insects (Coleoptera, Heteroptera) Acta Biol Debrecina Suppl Oecol Hungarica. 2005;13:37–42.
Pajunen VI. Studies on the population ecology of Leucorrhinia dubia v. d. Lind. (Odon., Libellulidae). Ann. Zool. Soc. Zool. Bot. Fenn. “Vanamo.” Helsinki; 1962. p. 23–25.
Lewis T, Taylor LR. Diurnal periodicity of flight by insects. Trans Entomol Soc London. 1964;116:393–476. doi: 10.1111/j.1365-2311.1965.tb02304.x. DOI
Platt RB, Collins CL, Witherspoon JP. Reactions of Anopheles quadrimaculatus Say to moisture, temperature, and light. Ecol Monogr. 1957;27:303–324. doi: 10.2307/1942188. DOI
Boix D, Magnusson AK, Gascón S, Sala J, Williams DD. Environmental influence on flight activity and arrival patterns of aerial colonizers of temporary ponds. Wetlands. 2011;31:1227–1240. doi: 10.1007/s13157-011-0234-z. DOI
Ruhí A, Chappuis E, Escoriza D, Jover M, Sala J, Boix D, et al. Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach. Hydrobiologia. 2014;723:25–39. doi: 10.1007/s10750-013-1514-9. DOI
Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol. 2015;60:845–869. doi: 10.1111/fwb.12533. DOI
Shipp JL, Grace BW, Schaalje GB. Effects of microclimate on daily flight activity of Simulium arcticum Malloch (Diptera: Simuliidae) Int J Biometeorol. 1987;31:9–20. doi: 10.1007/BF02192831. DOI
Blackwell A. Diel flight periodicity of the biting midge Culicoides impunctatus and the effects of meteorological conditions. Med Vet Entomol. 1997;11:361–367. doi: 10.1111/j.1365-2915.1997.tb00423.x. PubMed DOI
Sanders CJ, Shortall CR, Gubbins S, Burgin L, Gloster J, Harrington R, et al. Influence of season and meteorological parameters on flight activity of Culicoides biting midges. J Appl Ecol. 2011;48:1355–1364. doi: 10.1111/j.1365-2664.2011.02051.x. DOI
Hodkinson ID, Coulson SJ, Webb NR, Block W, Strathdee AT, Bale JS, et al. Temperature and the biomass of flying midges (Diptera: Chironomidae) in the high Arctic. Oikos. 1996;75:241–248. doi: 10.2307/3546247. DOI
Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M. Reflected polarization guides chironomid females to oviposition sites. J Exp Biol. 2008;211:3536–3543. doi: 10.1242/jeb.022277. PubMed DOI
Serra SRQ, Cobo F, Graça MAS, Dolédec S, Feio MJ. Synthesising the trait information of European Chironomidae (Insecta: Diptera): Towards a new database. Ecol Indic. 2016;61:282–292. doi: 10.1016/j.ecolind.2015.09.028. DOI
Armitage PD, Cranston PS, Pinder LCV, editors. The Chironomidae: biology and ecology of non-biting midges. Dordrecht: Springer Science + Business Media, B. V.; 1995.
Taylor LR. Insect migration, flight periodicity and the boundary layer. J Anim Ecol. 1974;43:225–238. doi: 10.2307/3169. DOI
Vallenduuk HJ, Moller Pillot HKM. Chironomidae larvae of the Netherlands and adjacent lowlands: general ecology and tanypodinae. Zeist: KNNV Publishing; 2013.
Wrubleski DA, Ross LCM. Diel periodicities of adult Chironomidae and trichoptera from the Delta Marsh, Manitoba, Canada. J Freshw Ecol. 1989;5:163–170. doi: 10.1080/02705060.1989.9665831. DOI
Kovats ZE, Ciborowski JJH, Corkum LD. Inland dispersal of adult aquatic insects. Freshw Biol. 1996;36:265–276. doi: 10.1046/j.1365-2427.1996.00087.x. DOI
Soong K, Leu Y. Adaptive mechanism of the bimodal emergence dates in the intertidal midge Pontomyia oceana. Mar Ecol Prog Ser. 2005;286:107–114. doi: 10.3354/meps286107. DOI
Bohonak AJ, Jenkins DG. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett. 2003;6:783–796. doi: 10.1046/j.1461-0248.2003.00486.x. DOI
Delettre Y, Tréhen P, Grootaert P. Space heterogeneity, space use and short-range dispersal in Diptera: a case study. Landsc Ecol. 1992;6:175–181. doi: 10.1007/BF00130029. DOI
Delettre YR, Morvan N. Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshw Biol. 2000;44:399–411. doi: 10.1046/j.1365-2427.2000.00578.x. DOI
Řehounková K, Čížek L, Řehounek J, Šebelíková L, Tropek R, Lencová K, et al. Additional disturbances as a beneficial tool for restoration of post-mining sites: a multi-taxa approach. Environ Sci Pollut Res. 2016;23:13745–13753. doi: 10.1007/s11356-016-6585-5. PubMed DOI
Langton PH, Pinder LCV. Keys to the adult male Chironomidae of Britain and Ireland, vol 1 and 2. Wareham: Freshwater Biological Assn; 2007.
Moller Pillot HKM. Identification and ecology of the genus Smittia Holmgren in the Netherlands (Diptera: Chironomidae) Tijdschr voor Entomol. 2008;151:245–270.
Oyewo EA, Saether OA. Revision of Polypedilum (Pentapedilum) Kieffer and Ainuyusurika Sasa et Shirasaki (Diptera: Chironomidae) Zootaxa. 2008;1953:145.
Ferrington LC, Sæther OA. A revision of the genera Pseudosmittia Edwards, 1932, Allocladius Kieffer, 1913, and Hydrosmittia gen. n. (Diptera: Chironomidae, Orthocladiinae) Zootaxa. 2011;2849:1–314.
Ekrem T, Stur E, Hebert PDN. Females do count: documenting Chironomidae (Diptera) species diversity using DNA barcoding. Org Divers Evol. 2010;10:397–408. doi: 10.1007/s13127-010-0034-y. DOI
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84:45–67. doi: 10.1890/13-0133.1. DOI
R Core Team. R: A language and environment for statistical computing. R Found Stat Comput Vienna, Austria; 2014. http://www.r-project.org/. Accessed 10 Nov 2014.
ter Braak CJF, Šmilauer P. Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power; 2012.
Hsieh TC, Ma KH, Chao A. iNEXT: interpolation and extrapolation for species diversity. R package version 2.0.8. R-project; 2016. p. 1–18.
Bartoń K. MuMIn: Multi-model inference. R package version 1.40.0; 2017. http://CRAN.R-project.org/package=MuMIn. Accessed 11 Oct 2017.
Faraway JJ. Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Boca Raton: Chapman & Hall/CRC Press; 2006.
Fox J. Effect displays in R for generalised linear models. J Stat Softw. 2003;8:1–27. doi: 10.18637/jss.v008.i15. DOI
Wool D, Kugler J. Circadian rhythm in Chironomid species (Diptera) from the Hula Nature Preserve, Israel. Ann Zool Fennici. 1969;6:94–97.
Oliver DR. Life history of the Chironomidae. Annu Rev Entomol. 1971;16:211–230. doi: 10.1146/annurev.en.16.010171.001235. DOI
Davies IJ. Relationships between dipteran emergence and phytoplankton production in the experimental lakes area, Northwestern Ontario. Can J Fish Aquat Sci. 1980;37:523–533. doi: 10.1139/f80-067. DOI
Danks HV, Oliver DR. Seasonal emergence of some high Arctic Chironomidae (Diptera) Can Entomol. 1972;104:661–686. doi: 10.4039/Ent104661-5. DOI
Mundie JH. The ecology of Chironomidae in storage reservoirs. Trans R Entomol Soc London. 1957;109:149–232. doi: 10.1111/j.1365-2311.1957.tb00141.x. DOI
Moller Pillot HKM. Chironomidae larvae of the Netherlands and adjacent lowlands: biology and ecology of the Chironomini. Zeist: KNNV Publishing; 2009.
Moller Pillot HKM. Chironomidae larvae of the Netherlands and adjacent lowlands: biology and ecology of the aquatic Orthocladiinae. Zeist: KNNV Publishing; 2013.
Weigelhofer G, Weissmair W, Waringer J. Night migration activity and the influence of meteorological parameters on light-trapping for aquatic Heteroptera. Zool Anz. 1993;229:209–218.
Popham EJ. The migration of aquatic bugs with special reference to the Corixidae. Arch für Hydrobiol. 1964;60:450–496.
Syrjämäki J. Diel patterns of swarming and other activities of two arctic Dipterans (Chironomidae and Trichoceridae) on Spitsbergen. Oikos. 1968;19:250–258. doi: 10.2307/3565012. DOI