Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 414
Univerzita Karlova v Praze - International
30216/C/2016
Grantová Agentura, Univerzita Karlova - International
P303/12/G163
Grantová Agentura České Republiky - International
PubMed
29934673
DOI
10.1007/s00210-018-1528-y
PII: 10.1007/s00210-018-1528-y
Knihovny.cz E-zdroje
- Klíčová slova
- Drug transporter, Flavonoids, OATP, SLCO, Soy isoflavones,
- MeSH
- buňky MDCK MeSH
- Glycine max * MeSH
- isoflavony farmakologie MeSH
- kinetika MeSH
- přenašeče organických aniontů antagonisté a inhibitory genetika metabolismus MeSH
- psi MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isoflavony MeSH
- přenašeče organických aniontů MeSH
- SLCO2B1 protein, human MeSH Prohlížeč
Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The Ki values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.
Zobrazit více v PubMed
Biochem Pharmacol. 2010 Dec 1;80(11):1746-53 PubMed
Br J Nutr. 2006 Jan;95(1):204-13 PubMed
Mol Nutr Food Res. 2007 Jul;51(7):765-81 PubMed
Drug Metab Dispos. 2007 Apr;35(4):590-4 PubMed
J Pharm Sci. 2013 Sep;102(9):3418-26 PubMed
Maturitas. 2014 Aug;78(4):263-76 PubMed
Biomed Rep. 2013 Sep;1(5):697-701 PubMed
J Pharm Sci. 2017 Sep;106(9):2657-2663 PubMed
J Nutr. 2009 Nov;139(11):2037-43 PubMed
J Pharm Pharmacol. 2010 Jul;62(7):908-14 PubMed
Curr Drug Metab. 2015;16(2):124-40 PubMed
Arch Toxicol. 2015 Dec;89(12):2253-63 PubMed
Mol Aspects Med. 2013 Apr-Jun;34(2-3):396-412 PubMed
Drug Metab Dispos. 2018 May;46(5):692-696 PubMed
Drug Metab Dispos. 2006 Apr;34(4):577-82 PubMed
Expert Opin Drug Metab Toxicol. 2017 Apr;13(4):409-424 PubMed
J AOAC Int. 2006 Jul-Aug;89(4):1138-46 PubMed
Gastroenterology. 2001 Feb;120(2):525-33 PubMed
Arch Biochem Biophys. 2014 Oct 1;559:24-8 PubMed
Eur J Pharm Sci. 2012 May 12;46(1-2):79-85 PubMed
Mol Pharm. 2014 Oct 6;11(10):3547-55 PubMed
Drug Metab Pharmacokinet. 2010;25(6):521-30 PubMed
J AOAC Int. 2000 May-Jun;83(3):635-50 PubMed
Br J Pharmacol. 2012 Mar;165(5):1260-87 PubMed
Eur J Pharmacol. 2012 Feb 15;676(1-3):89-94 PubMed
Crit Rev Food Sci Nutr. 2008 Jun;48(6):538-52 PubMed
Adv Drug Deliv Rev. 2017 Jul 1;116:45-62 PubMed
Drug Metab Dispos. 2015 Apr;43(4):424-32 PubMed
Xenobiotica. 2018 Jan;48(1):73-78 PubMed
J Pharmacol Exp Ther. 2003 Aug;306(2):703-8 PubMed
Biopharm Drug Dispos. 2013 Jan;34(1):45-78 PubMed
J Womens Health (Larchmt). 2012 Jun;21(6):674-82 PubMed
Food Chem. 2017 May 1;222:67-73 PubMed
Adv Drug Deliv Rev. 2013 Oct;65(10):1340-56 PubMed
Expert Rev Clin Pharmacol. 2011 Nov;4(6):729-42 PubMed
Crit Rev Food Sci Nutr. 2016 Jul 29;56 Suppl 1:S95-S109 PubMed
Crit Rev Toxicol. 2014 Sep;44(8):696-724 PubMed
Xenobiotica. 2018 Jul;48(7):745-755 PubMed
J Steroid Biochem Mol Biol. 2003 Dec;87(4-5):285-99 PubMed
Drug Metab Dispos. 2005 Nov;33(11):1666-72 PubMed
Curr Drug Metab. 2014;15(8):791-807 PubMed
J Steroid Biochem Mol Biol. 1995 Aug;54(3-4):167-84 PubMed
Am J Clin Nutr. 1998 Dec;68(6 Suppl):1474S-1479S PubMed
Drug Metab Dispos. 2013 May;41(5):958-65 PubMed
Am J Clin Nutr. 2007 Apr;85(4):1050-6 PubMed