ELISA-like Analysis of Cisplatinated DNA Using Magnetic Separation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29942374
PubMed Central
PMC5997378
DOI
10.5772/61699
PII: 10.5772_61699
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-DNA Antibodies, Cisplatin, Magnetic Separation, Sandwich Analysis,
- Publikační typ
- časopisecké články MeSH
Cisplatin belongs to the most widely used cytostatic drugs. The determination of the presence of the DNA-cisplatin adducts may not only signal the guanine-rich regions but also monitor the interaction reaction between DNA and the drug in terms of speed of interaction. In this work, the combined advantages of magnetic particles-based isolation/purification with fluorescent properties of quantum dots (QDs) and antibodies targeted on specific recognition of DNA-cisplatin adducts are demonstrated. The formation of a complex between magnetic particles with surface modified by anti-dsDNA antibody, cisplatin-modified DNA and QDs labelled anti-cisplatin-modified DNA antibody was suggested and optimized.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Fialova D, Kremplova M, Melichar L, Kopel P, Hynek D, Adam V, et al. Interaction of Heavy Metal Ions with Carbon and Iron Based Particles. Materials. [Article]. 2014. Mar; 7(3):2242–56. PubMed PMC
Krizkova S, Ryvolova M, Hynek D, Eckschlager T, Hodek P, Masarik M, et al. Immunoextraction of zinc proteins from human plasma using chicken yolk antibodies immobilized onto paramagnetic particles and their electrophoretic analysis. Electrophoresis. [Article]. 2012. Jul; 33(12):1824–32. PubMed
Pirouz MJ, Beyki MH, Shemirani F. Anhydride functionalised calcium ferrite nanoparticles: A new selective magnetic material for enrichment of lead ions from water and food samples. Food Chemistry. [Article]. 2015. Mar; 170:131–7. PubMed
Tie SL, Lin YQ, Lee HC, Bae YS, Lee CH. Amino acid-coated nano-sized magnetite particles prepared by two-step transformation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. [Article]. 2006. Feb; 273(1–3):75–83.
Zitka O, Cernei N, Heger Z, Matousek M, Kopel P, Kynicky J, et al. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. [Article]. 2013. Sep; 34(18):2639–47. PubMed
Zitka O, Heger Z, Kominkova M, Skalickova S, Krizkova S, Adam V, et al. Preconcentration based on paramagnetic microparticles for the separation of sarcosine using hydrophilic interaction liquid chromatography coupled with coulometric detection. Journal of Separation Science. [Article]. 2014. Mar; 37(5):465–75. PubMed
Nelson DA, Strachan BC, Sloane HS, Li JY, Landers JP. Dual-force aggregation of magnetic particles enhances label-free quantification of DNA at the sub-single cell level. Analytica Chimica Acta. [Article]. 2014. Mar; 819:34–41. PubMed
Smerkova K, Dostalova S, Skutkova H, Ryvolova M, Adam V, Provaznik I, et al. Isolation of Xis Gen Fragment of lambda Phage from Agarose Gel Using Magnetic Particles for Subsequent Enzymatic DNA Sequencing. Chromatographia. [Article]. 2013. Apr; 76(7–8):329–34.
Smerkova K, Dostalova S, Vaculovicova M, Kynicky J, Trnkova L, Kralik M, et al. Investigation of interaction between magnetic silica particles and lambda phage DNA fragment. Journal of Pharmaceutical and Biomedical Analysis. [Article]. 2013. Dec; 86:65–72. PubMed
Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, et al. Apoferritin Modified Magnetic Particles as Doxorubicin Carriers for Anticancer Drug Delivery. International Journal of Molecular Sciences. [Article]. 2013. Jul; 14(7):13391–402. PubMed PMC
Luo L, Zhang HS, Liu Y, Ha W, Li LH, Gong XL, et al. Preparation of thermosensitive polymer magnetic particles and their application in protein separations. Journal of Colloid and Interface Science. [Article]. 2014. Dec; 435:99–104. PubMed
Zitka O, Krizkova S, Skalickova S, Dospivova D, Adam V, Kizek R. Microfluidic tool coupled with electrochemical assay for detection of lactoferrin isolated by antibody-modified paramagnetic beads. Electrophoresis. [Article]. 2013. Jul; 34(14):2120–8. PubMed
Heger Z, Cernei N, Guran R, Michalek P, Milosavljevic V, Kopel P, et al. Gamma-Fe2O3 Magnetic Core Functionalized with Tetraethyl Orthosilicate and 3-Aminopropyl Triethoxysilane for an Isolation of H7N7 Influenza Serotype Virions. International Journal of Electrochemical Science. [Article]. 2014. Jul; 9(7):3374–85.
Krejcova L, Hynek D, Adam V, Hubalek J, Kizek R. Electrochemical Sensors and Biosensors for Influenza Detection. International Journal of Electrochemical Science. [Review]. 2012. Nov; 7(11): 10779–801.
Zhou CH, Shu Y, Hong ZY, Pang DW, Zhang ZL. Electrochemical Magnetoimmunosensing Approach for the Sensitive Detection of H9N2 Avian Influenza Virus Particles. Chemistry – An Asian Journal. [Article]. 2013. Sep; 8(9):2220–6. PubMed
Jilkova E, Krizkova S, Krejcova L, Hynek D, Sochor J, Kynicky J, et al. Fully Automated Isolation of Proteins Binding Zn from Staphylococcus aureus Cells Using Paramagnetic Particles. Chemicke Listy. [Article]. 2013; 107(8):648–54.
Nejdl L, Kudr J, Cihalova K, Chudobova D, Zurek M, Zalud L, et al. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis. [Article]. 2014. Aug; 35(16):2333–45. PubMed
Wang Y, Deng MC, Jia L. N-methylimidazolium functionalized magnetic particles as adsorbents for rapid and efficient capture of bacteria. Microchimica Acta. [Article]. 2014. Aug; 181(11–12):1275–83.
Hsing IM, Xu Y, Zhao WT. Micro- and nano-magnetic particles for applications in biosensing. Electroanalysis. [Review]. 2007. Apr; 19(7–8):755–68.
Kmiecik S, Kolinski A. Folding pathway of the B1 domain of protein G explored by multiscale modeling. Biophysical Journal. [Article]. 2008. Feb; 94(3):726–36. PubMed PMC
Akerstrom B, Brodin T, Reis K, Bjorck L. Protein-G – A Powerful Tool for Binding and Detection of Monoclonal and Polyclonal Antibodies. Journal of Immunology. [Article]. 1985; 135(4):2589–92. PubMed
Janu L, Stanisavljevic M, Krizkova S, Sobrova P, Vaculovicova M, Kizek R, et al. Electrophoretic study of peptide-mediated quantum dot-human immunoglobulin bioconjugation. Electrophoresis. 2013. Sep; 34(18):2725–32. PubMed
Taranova NA, Berlina AN, Zherdev AV, Dzantiev BB. ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors & Bioelectronics. [Article]. 2015. Jan; 63:255–61. PubMed
Wu Z, Zhou CH, Chen JJ, Xiong CC, Chen Z, Pang DW, et al. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors & Bioelectronics. 2015. Jun; 68:586–92. PubMed
Krizkova S, Adam V, Eckschlager T, Kizek R. Using of chicken antibodies for metallothionein detection in human blood serum and cadmium-treated tumour cell lines after dot- and electroblotting. Electrophoresis. [Article]. 2009. Nov; 30(21):3726–35. PubMed
Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene. [Review]. 2003. Oct; 22(47):7265–79. PubMed
Oliver TG, Mercer KL, Sayles LC, Burke JR, Mendus D, Lovejoy KS, et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes & Development. 2010. Apr; 24(8):837–52. PubMed PMC
Spellman PT, Gray JW. Detecting cancer by monitoring circulating tumor DNA. Nature Medicine. 2014. May; 20(5):474–5. PubMed
Ithakissios DS, Hapke B. Radioiodinated DNA as potential tumor-imaging agent. Journal of Nuclear Medicine. 1979; 20(7):785–8. PubMed
Shokrollahi H, Khorramdin A, Isapour G. Magnetic resonance imaging by using nano-magnetic particles. Journal of Magnetism and Magnetic Materials. [Review]. 2014. Nov; 369:176–83.
Dutz S, Hergt R. Magnetic particle hyperthermia – a promising tumour therapy? Nanotechnology. [Review]. 2014. Nov; 25(45. PubMed
Sar DG, Montes-Bayón M, Blanco-González E, Sanz-Medel A. Quantitative methods for studying DNA interactions with chemotherapeutic cisplatin. TrAC Trends in Analytical Chemistry. 2010; 29(11): 1390–8.
Liedert B, Pluim D, Schellens J, Thomale J. Adduct-specific monoclonal antibodies for the measurement of cisplatin-induced DNA lesions in individual cell nuclei. Nucleic Acids Research. 2006; 34(6. PubMed PMC
Hoebers FJP, Pluim D, Hart AAM, Verheij M, Balm AJM, Fons G, et al. Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: Lack of correlation between normal tissues and primary tumor. Cancer Chemotherapy and Pharmacology. 2008. 2008/05/01; 61(6):1075–81. PubMed PMC
Brouwers EEM, Tibbenm M, Pluim D, Rosing H, Boot H, Cats A, et al. Inductively coupled plasma mass spectrometric analysis of the total amount of platinum in DNA extracts from peripheral blood mononuclear cells and tissue from patients treated with cisplatin. Analytical and Bioanalytical Chemistry. 2008. 2008/05/01; 391(2):577–85. PubMed
Zitka O, Krizkova S, Krejcova L, Hynek D, Gumulec J, Masarik M, et al. Microfluidic tool based on the antibody-modified paramagnetic particles for detection of 8-hydroxy-2'-deoxyguanosine in urine of prostate cancer patients. Electrophoresis. 2011. Nov; 32(22):3207–20. PubMed