Contribution of Epstein⁻Barr Virus Latent Proteins to the Pathogenesis of Classical Hodgkin Lymphoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29954084
PubMed Central
PMC6161176
DOI
10.3390/pathogens7030059
PII: pathogens7030059
Knihovny.cz E-zdroje
- Klíčová slova
- B cells, Epstein–Barr virus, Hodgkin lymphoma, latency,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pathogenic viruses have evolved to manipulate the host cell utilising a variety of strategies including expression of viral proteins to hijack or mimic the activity of cellular functions. DNA tumour viruses often establish latent infection in which no new virions are produced, characterized by the expression of a restricted repertoire of so-called latent viral genes. These latent genes serve to remodel cellular functions to ensure survival of the virus within host cells, often for the lifetime of the infected individual. However, under certain circumstances, virus infection may contribute to transformation of the host cell; this event is not a usual outcome of infection. Here, we review how the Epstein⁻Barr virus (EBV), the prototypic oncogenic human virus, modulates host cell functions, with a focus on the role of the EBV latent genes in classical Hodgkin lymphoma.
Institute for Cancer and Genomic Medicine University of Birmingham Birmingham B15 2TT UK
Institute of Immunology and Immunotherapy University of Birmingham Birmingham B15 2TT UK
Zobrazit více v PubMed
Rickinson A.B., Rowe M., Hart I.J., Yao Q.Y., Henderson L.E., Rabin H., Epstein M.A. T-cell-mediated regression of “spontaneous” and of epstein-barr virus-induced b-cell transformation in vitro: Studies with cyclosporin a. Cell. Immunol. 1984;87:646–658. doi: 10.1016/0008-8749(84)90032-7. PubMed DOI
Kerr B.M., Lear A.L., Rowe M., Croom-Carter D., Young L.S., Rookes S.M., Gallimore P.H., Rickinson A.B. Three transcriptionally distinct forms of epstein-barr virus latency in somatic cell hybrids: Cell phenotype dependence of virus promoter usage. Virology. 1992;187:189–201. doi: 10.1016/0042-6822(92)90307-B. PubMed DOI
Pfeffer S., Zavolan M., Grasser F.A., Chien M., Russo J.J., Ju J., John B., Enright A.J., Marks D., Sander C., et al. Identification of virus-encoded micrornas. Science. 2004;304:734–736. doi: 10.1126/science.1096781. PubMed DOI
Young L.S., Yap L.F., Murray P.G. Epstein-barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI
Szymula A., Palermo R.D., Bayoumy A., Groves I.J., Ba Abdullah M., Holder B., White R.E. Epstein-barr virus nuclear antigen ebna-lp is essential for transforming naive b cells, and facilitates recruitment of transcription factors to the viral genome. PLoS Pathog. 2018;14:e1006890. doi: 10.1371/journal.ppat.1006890. PubMed DOI PMC
Babcock G.J., Decker L.L., Volk M., Thorley-Lawson D.A. Ebv persistence in memory b cells in vivo. Immunity. 1998;9:395–404. doi: 10.1016/S1074-7613(00)80622-6. PubMed DOI
Babcock G.J., Hochberg D., Thorley-Lawson D.A. The expression pattern of epstein-barr virus latent genes in vivo is dependent upon the differentiation stage of the infected b cell. Immunity. 2000;13:497–506. doi: 10.1016/S1074-7613(00)00049-2. PubMed DOI
Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W. Latent membrane protein 1 of epstein-barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16:6131–6140. doi: 10.1093/emboj/16.20.6131. PubMed DOI PMC
Caldwell R.G., Wilson J.B., Anderson S.J., Longnecker R. Epstein-barr virus lmp2a drives b cell development and survival in the absence of normal b cell receptor signals. Immunity. 1998;9:405–411. doi: 10.1016/S1074-7613(00)80623-8. PubMed DOI
Rovedo M., Longnecker R. Epstein-barr virus latent membrane protein 2b (lmp2b) modulates lmp2a activity. J. Virol. 2007;81:84–94. doi: 10.1128/JVI.01302-06. PubMed DOI PMC
Laichalk L.L., Thorley-Lawson D.A. Terminal differentiation into plasma cells initiates the replicative cycle of epstein-barr virus in vivo. J. Virol. 2004;79:1296–1307. doi: 10.1128/JVI.79.2.1296-1307.2005. PubMed DOI PMC
Liu Y., Sattarzadeh A., Diepstra A., Visser L., van den Berg A. The microenvironment in classical hodgkin lymphoma: An actively shaped and essential tumor component. Semin. Cancer Biol. 2014;24:15–22. doi: 10.1016/j.semcancer.2013.07.002. PubMed DOI
Anagnostopoulos I., Hansmann M.L., Franssila K., Harris M., Harris N.L., Jaffe E.S., Han J., van Krieken J.M., Poppema S., Marafioti T., et al. European task force on lymphoma project on lymphocyte predominance hodgkin disease: Histologic and immunohistologic analysis of submitted cases reveals 2 types of hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood. 2000;96:1889–1899. PubMed
Kuppers R., Rajewsky K. The origin of hodgkin and reed/sternberg cells in hodgkin’s disease. Annu. Rev. Immunol. 1998;16:471–493. doi: 10.1146/annurev.immunol.16.1.471. PubMed DOI
Kuppers R., Rajewsky K., Zhao M., Simons G., Laumann R., Fischer R., Hansmann M.L. Hodgkin disease: Hodgkin and reed-sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from b cells at various stages of development. Proc. Natl. Acad. Sci. USA. 1994;91:10962–10966. doi: 10.1073/pnas.91.23.10962. PubMed DOI PMC
Kuppers R., Rajewsky K., Zhao M., Simons G., Laumann R., Fischer R., Hansmann M.L. Hodgkin’s disease: Clonal ig gene rearrangements in hodgkin and reed-sternberg cells picked from histological sections. Ann. N. Y. Acad. Sci. 1995;764:523–524. doi: 10.1111/j.1749-6632.1995.tb55877.x. PubMed DOI
Marafioti T., Hummel M., Anagnostopoulos I., Foss H.D., Falini B., Delsol G., Isaacson P.G., Pileri S., Stein H. Origin of nodular lymphocyte-predominant hodgkin’s disease from a clonal expansion of highly mutated germinal-center b cells. N. Engl. J. Med. 1997;337:453–458. doi: 10.1056/NEJM199708143370703. PubMed DOI
Ushmorov A., Ritz O., Hummel M., Leithauser F., Moller P., Stein H., Wirth T. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood. 2004;104:3326–3334. doi: 10.1182/blood-2003-04-1197. PubMed DOI
Hertel C.B., Zhou X.G., Hamilton-Dutoit S.J., Junker S. Loss of b cell identity correlates with loss of b cell-specific transcription factors in hodgkin/reed-sternberg cells of classical hodgkin lymphoma. Oncogene. 2002;21:4908–4920. doi: 10.1038/sj.onc.1205629. PubMed DOI
Schwering I., Brauninger A., Klein U., Jungnickel B., Tinguely M., Diehl V., Hansmann M.L., Dalla-Favera R., Rajewsky K., Kuppers R. Loss of the b-lineage-specific gene expression program in hodgkin and reed-sternberg cells of hodgkin lymphoma. Blood. 2003;101:1505–1512. doi: 10.1182/blood-2002-03-0839. PubMed DOI
Kuppers R., Klein U., Schwering I., Distler V., Brauninger A., Cattoretti G., Tu Y., Stolovitzky G.A., Califano A., Hansmann M.L., et al. Identification of hodgkin and reed-sternberg cell-specific genes by gene expression profiling. J. Clin. Investig. 2003;111:529–537. doi: 10.1172/JCI200316624. PubMed DOI PMC
Tiacci E., Doring C., Brune V., van Noesel C.J., Klapper W., Mechtersheimer G., Falini B., Kuppers R., Hansmann M.L. Analyzing primary hodgkin and reed-sternberg cells to capture the molecular and cellular pathogenesis of classical hodgkin lymphoma. Blood. 2012;120:4609–4620. doi: 10.1182/blood-2012-05-428896. PubMed DOI
Steidl C., Diepstra A., Lee T., Chan F.C., Farinha P., Tan K., Telenius A., Barclay L., Shah S.P., Connors J.M., et al. Gene expression profiling of microdissected hodgkin reed-sternberg cells correlates with treatment outcome in classical hodgkin lymphoma. Blood. 2012;120:3530–3540. doi: 10.1182/blood-2012-06-439570. PubMed DOI
Bargou R.C., Leng C., Krappmann D., Emmerich F., Mapara M.Y., Bommert K., Royer H.D., Scheidereit C., Dorken B. High-level nuclear nf-kappa b and oct-2 is a common feature of cultured hodgkin/reed-sternberg cells. Blood. 1996;87:4340–4347. PubMed
Carbone A., Gloghini A., Gattei V., Aldinucci D., Degan M., De Paoli P., Zagonel V., Pinto A. Expression of functional cd40 antigen on reed-sternberg cells and hodgkin’s disease cell lines. Blood. 1995;85:780–789. PubMed
Fiumara P., Snell V., Li Y., Mukhopadhyay A., Younes M., Gillenwater A.M., Cabanillas F., Aggarwal B.B., Younes A. Functional expression of receptor activator of nuclear factor kappab in hodgkin disease cell lines. Blood. 2001;98:2784–2790. doi: 10.1182/blood.V98.9.2784. PubMed DOI
Horie R., Watanabe T., Morishita Y., Ito K., Ishida T., Kanegae Y., Saito I., Higashihara M., Mori S., Kadin M.E., et al. Ligand-independent signaling by overexpressed cd30 drives nf-kappab activation in hodgkin-reed-sternberg cells. Oncogene. 2002;21:2493–2503. doi: 10.1038/sj.onc.1205337. PubMed DOI
Chiu A., Xu W., He B., Dillon S.R., Gross J.A., Sievers E., Qiao X., Santini P., Hyjek E., Lee J.W., et al. Hodgkin lymphoma cells express taci and bcma receptors and generate survival and proliferation signals in response to baff and april. Blood. 2007;109:729–739. doi: 10.1182/blood-2006-04-015958. PubMed DOI PMC
Carbone A., Gloghini A., Gruss H.J., Pinto A. Cd40 ligand is constitutively expressed in a subset of t cell lymphomas and on the microenvironmental reactive t cells of follicular lymphomas and hodgkin’s disease. Am. J. Pathol. 1995;147:912–922. PubMed PMC
Pinto A., Aldinucci D., Gloghini A., Zagonel V., Degan M., Perin V., Todesco M., De Iuliis A., Improta S., Sacco C., et al. The role of eosinophils in the pathobiology of hodgkin’s disease. Ann. Oncol. 1997;8(Suppl. 2):89–96. doi: 10.1093/annonc/8.suppl_2.S89. PubMed DOI
Kreher S., Bouhlel M.A., Cauchy P., Lamprecht B., Li S., Grau M., Hummel F., Kochert K., Anagnostopoulos I., Johrens K., et al. Mapping of transcription factor motifs in active chromatin identifies irf5 as key regulator in classical hodgkin lymphoma. Proc. Natl. Acad. Sci. USA. 2014;111:E4513–E4522. doi: 10.1073/pnas.1406985111. PubMed DOI PMC
Schwarzer R., Dorken B., Jundt F. Notch is an essential upstream regulator of nf-kappab and is relevant for survival of hodgkin and reed-sternberg cells. Leukemia. 2012;26:806–813. doi: 10.1038/leu.2011.265. PubMed DOI
Barth T.F., Martin-Subero J.I., Joos S., Menz C.K., Hasel C., Mechtersheimer G., Parwaresch R.M., Lichter P., Siebert R., Mooller P. Gains of 2p involving the rel locus correlate with nuclear c-rel protein accumulation in neoplastic cells of classical hodgkin lymphoma. Blood. 2003;101:3681–3686. doi: 10.1182/blood-2002-08-2577. PubMed DOI
Joos S., Granzow M., Holtgreve-Grez H., Siebert R., Harder L., Martin-Subero J.I., Wolf J., Adamowicz M., Barth T.F., Lichter P., et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including rel and jak2. Int. J. Cancer. 2003;103:489–495. doi: 10.1002/ijc.10845. PubMed DOI
Martin-Subero J.I., Gesk S., Harder L., Sonoki T., Tucker P.W., Schlegelberger B., Grote W., Novo F.J., Calasanz M.J., Hansmann M.L., et al. Recurrent involvement of the rel and bcl11a loci in classical hodgkin lymphoma. Blood. 2002;99:1474–1477. doi: 10.1182/blood.V99.4.1474. PubMed DOI
Steidl C., Telenius A., Shah S.P., Farinha P., Barclay L., Boyle M., Connors J.M., Horsman D.E., Gascoyne R.D. Genome-wide copy number analysis of hodgkin reed-sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116:418–427. doi: 10.1182/blood-2009-12-257345. PubMed DOI
Cabannes E., Khan G., Aillet F., Jarrett R.F., Hay R.T. Mutations in the ikba gene in hodgkin’s disease suggest a tumour suppressor role for ikappabalpha. Oncogene. 1999;18:3063–3070. doi: 10.1038/sj.onc.1202893. PubMed DOI
Emmerich F., Meiser M., Hummel M., Demel G., Foss H.D., Jundt F., Mathas S., Krappmann D., Scheidereit C., Stein H., et al. Overexpression of i kappa b alpha without inhibition of nf-kappab activity and mutations in the i kappa b alpha gene in reed-sternberg cells. Blood. 1999;94:3129–3134. PubMed
Jungnickel B., Staratschek-Jox A., Brauninger A., Spieker T., Wolf J., Diehl V., Hansmann M.L., Rajewsky K., Kuppers R. Clonal deleterious mutations in the ikappabalpha gene in the malignant cells in hodgkin’s lymphoma. J. Exp. Med. 2000;191:395–402. doi: 10.1084/jem.191.2.395. PubMed DOI PMC
Emmerich F., Theurich S., Hummel M., Haeffker A., Vry M.S., Dohner K., Bommert K., Stein H., Dorken B. Inactivating i kappa b epsilon mutations in hodgkin/reed-sternberg cells. J. Pathol. 2003;201:413–420. doi: 10.1002/path.1454. PubMed DOI
Lake A., Shield L.A., Cordano P., Chui D.T., Osborne J., Crae S., Wilson K.S., Tosi S., Knight S.J., Gesk S., et al. Mutations of nfkbia, encoding ikappab alpha, are a recurrent finding in classical hodgkin lymphoma but are not a unifying feature of non-ebv-associated cases. Int. J. Cancer. 2009;125:1334–1342. doi: 10.1002/ijc.24502. PubMed DOI
Martin-Subero J.I., Wlodarska I., Bastard C., Picquenot J.M., Hoppner J., Giefing M., Klapper W., Siebert R. Chromosomal rearrangements involving the bcl3 locus are recurrent in classical hodgkin and peripheral t-cell lymphoma. Blood. 2006;108:401–402. doi: 10.1182/blood-2005-09-3843. PubMed DOI
Mathas S., Johrens K., Joos S., Lietz A., Hummel F., Janz M., Jundt F., Anagnostopoulos I., Bommert K., Lichter P., et al. Elevated nf-kappab p50 complex formation and bcl-3 expression in classical hodgkin, anaplastic large-cell, and other peripheral t-cell lymphomas. Blood. 2005;106:4287–4293. doi: 10.1182/blood-2004-09-3620. PubMed DOI
Schmitz R., Hansmann M.L., Bohle V., Martin-Subero J.I., Hartmann S., Mechtersheimer G., Klapper W., Vater I., Giefing M., Gesk S., et al. Tnfaip3 (a20) is a tumor suppressor gene in hodgkin lymphoma and primary mediastinal b cell lymphoma. J. Exp. Med. 2009;206:981–989. doi: 10.1084/jem.20090528. PubMed DOI PMC
Reichel J., Chadburn A., Rubinstein P.G., Giulino-Roth L., Tam W., Liu Y., Gaiolla R., Eng K., Brody J., Inghirami G., et al. Flow sorting and exome sequencing reveal the oncogenome of primary hodgkin and reed-sternberg cells. Blood. 2015;125:1061–1072. doi: 10.1182/blood-2014-11-610436. PubMed DOI
Ranuncolo S.M., Pittaluga S., Evbuomwan M.O., Jaffe E.S., Lewis B.A. Hodgkin lymphoma requires stabilized nik and constitutive relb expression for survival. Blood. 2012;120:3756–3763. doi: 10.1182/blood-2012-01-405951. PubMed DOI PMC
Otto C., Giefing M., Massow A., Vater I., Gesk S., Schlesner M., Richter J., Klapper W., Hansmann M.L., Siebert R., et al. Genetic lesions of the traf3 and map3k14 genes in classical hodgkin lymphoma. Br. J. Haematol. 2012;157:702–708. doi: 10.1111/j.1365-2141.2012.09113.x. PubMed DOI
Cattaruzza L., Gloghini A., Olivo K., Di Francia R., Lorenzon D., De Filippi R., Carbone A., Colombatti A., Pinto A., Aldinucci D. Functional coexpression of interleukin (il)-7 and its receptor (il-7r) on hodgkin and reed-sternberg cells: Involvement of il-7 in tumor cell growth and microenvironmental interactions of hodgkin’s lymphoma. Int. J. Cancer. 2009;125:1092–1101. doi: 10.1002/ijc.24389. PubMed DOI
Skinnider B.F., Elia A.J., Gascoyne R.D., Trumper L.H., von Bonin F., Kapp U., Patterson B., Snow B.E., Mak T.W. Interleukin 13 and interleukin 13 receptor are frequently expressed by hodgkin and reed-sternberg cells of hodgkin lymphoma. Blood. 2001;97:250–255. doi: 10.1182/blood.V97.1.250. PubMed DOI
Kapp U., Yeh W.-C., Patterson B., Elia A.J., Kägi D., Ho A., Hessel A., Tipsword M., Williams A., Mirtsos C., et al. Interleukin 13 is secreted by and stimulates the growth of hodgkin and reed-sternberg cells. J. Exp. Med. 1999;189:1939–1946. doi: 10.1084/jem.189.12.1939. PubMed DOI PMC
Gruss H.J., Brach M.A., Drexler H.G., Bross K.J., Herrmann F. Interleukin-9 is expressed by primary and cultured hodgkin and reed-sternberg cells. Cancer Res. 1992;52:1026–1031. PubMed
Aldinucci D., Poletto D., Gloghini A., Nanni P., Degan M., Perin T., Ceolin P., Rossi F.M., Gattei V., Carbone A., et al. Expression of functional interleukin-3 receptors on hodgkin and reed-sternberg cells. Am. J. Pathol. 2002;160:585–596. doi: 10.1016/S0002-9440(10)64878-X. PubMed DOI PMC
Lamprecht B., Kreher S., Anagnostopoulos I., Johrens K., Monteleone G., Jundt F., Stein H., Janz M., Dorken B., Mathas S. Aberrant expression of the th2 cytokine il-21 in hodgkin lymphoma cells regulates stat3 signaling and attracts treg cells via regulation of mip-3alpha. Blood. 2008;112:3339–3347. doi: 10.1182/blood-2008-01-134783. PubMed DOI
Scheeren F.A., Diehl S.A., Smit L.A., Beaumont T., Naspetti M., Bende R.J., Blom B., Karube K., Ohshima K., van Noesel C.J., et al. Il-21 is expressed in hodgkin lymphoma and activates stat5: Evidence that activated stat5 is required for hodgkin lymphomagenesis. Blood. 2008;111:4706–4715. doi: 10.1182/blood-2007-08-105643. PubMed DOI PMC
Hinz M., Lemke P., Anagnostopoulos I., Hacker C., Krappmann D., Mathas S., Dörken B., Zenke M., Stein H., Scheidereit C. Nuclear factor κb–dependent gene expression profiling of hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 2002;196:605–617. doi: 10.1084/jem.20020062. PubMed DOI PMC
Skinnider B.F., Elia A.J., Gascoyne R.D., Patterson B., Trumper L., Kapp U., Mak T.W. Signal transducer and activator of transcription 6 is frequently activated in hodgkin and reed-sternberg cells of hodgkin lymphoma. Blood. 2002;99:618–626. doi: 10.1182/blood.V99.2.618. PubMed DOI
Kube D., Holtick U., Vockerodt M., Ahmadi T., Haier B., Behrmann I., Heinrich P.C., Diehl V., Tesch H. Stat3 is constitutively activated in hodgkin cell lines. Blood. 2001;98:762–770. doi: 10.1182/blood.V98.3.762. PubMed DOI
Joos S., Kupper M., Ohl S., von Bonin F., Mechtersheimer G., Bentz M., Marynen P., Moller P., Pfreundschuh M., Trumper L., et al. Genomic imbalances including amplification of the tyrosine kinase gene jak2 in cd30+ hodgkin cells. Cancer Res. 2000;60:549–552. PubMed
Weniger M.A., Melzner I., Menz C.K., Wegener S., Bucur A.J., Dorsch K., Mattfeldt T., Barth T.F., Moller P. Mutations of the tumor suppressor gene socs-1 in classical hodgkin lymphoma are frequent and associated with nuclear phospho-stat5 accumulation. Oncogene. 2006;25:2679–2684. doi: 10.1038/sj.onc.1209151. PubMed DOI
Gunawardana J., Chan F.C., Telenius A., Woolcock B., Kridel R., Tan K.L., Ben-Neriah S., Mottok A., Lim R.S., Boyle M., et al. Recurrent somatic mutations of ptpn1 in primary mediastinal b cell lymphoma and hodgkin lymphoma. Nat. Genet. 2014;46:329–335. doi: 10.1038/ng.2900. PubMed DOI
Tiacci E., Penson A., Schiavoni G., Ladewig E., Fortini E., Wang Y.C., Spanhol-Rosseto A., Venanzi A., Gianni A.M., Viviani S., et al. New recurrently mutated genes in classical hodgkin lymphoma revealed by whole-exome sequencing of microdissected tumor cells. Blood. 2016;128:1088.
Zahn M., Marienfeld R., Melzner I., Heinrich J., Renner B., Wegener S., Miessner A., Barth T.F., Dorsch K., Bruderlein S., et al. A novel ptpn1 splice variant upregulates jak/stat activity in classical hodgkin lymphoma cells. Blood. 2017;129:1480–1490. doi: 10.1182/blood-2016-06-720516. PubMed DOI
Lollies A., Hartmann S., Schneider M., Bracht T., Weiss A.L., Arnolds J., Klein-Hitpass L., Sitek B., Hansmann M.L., Kuppers R., et al. An oncogenic axis of stat-mediated batf3 upregulation causing myc activity in classical hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia. 2018;32:92–101. doi: 10.1038/leu.2017.203. PubMed DOI
Mathas S., Hinz M., Anagnostopoulos I., Krappmann D., Lietz A., Jundt F., Bommert K., Mechta-Grigoriou F., Stein H., Dorken B., et al. Aberrantly expressed c-jun and junb are a hallmark of hodgkin lymphoma cells, stimulate proliferation and synergize with nf-kappa b. EMBO J. 2002;21:4104–4113. doi: 10.1093/emboj/cdf389. PubMed DOI PMC
Dutton A., Reynolds G.M., Dawson C.W., Young L.S., Murray P.G. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of hodgkin’s lymphoma cells through a mechanism involving akt kinase and mtor. J. Pathol. 2005;205:498–506. doi: 10.1002/path.1725. PubMed DOI
Georgakis G.V., Li Y., Rassidakis G.Z., Medeiros L.J., Mills G.B., Younes A. Inhibition of the phosphatidylinositol-3 kinase/akt promotes g1 cell cycle arrest and apoptosis in hodgkin lymphoma. Br. J. Haematol. 2006;132:503–511. doi: 10.1111/j.1365-2141.2005.05881.x. PubMed DOI
Vrzalikova K., Ibrahim M., Vockerodt M., Perry T., Margielewska S., Lupino L., Nagy E., Soilleux E., Liebelt D., Hollows R., et al. S1pr1 drives a feed forward signalling loop to regulate batf3 and the transcriptional programme of hodgkin lymphoma cells. Leukemia. 2017;32:214. doi: 10.1038/leu.2017.275. PubMed DOI PMC
Willenbrock K., Kuppers R., Renne C., Brune V., Eckerle S., Weidmann E., Brauninger A., Hansmann M.L. Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical hodgkin’s lymphoma. Haematologica. 2006;91:596–604. PubMed
Renne C., Minner S., Kuppers R., Hansmann M.L., Brauninger A. Autocrine ngfbeta/trka signalling is an important survival factor for hodgkin lymphoma derived cell lines. Leuk. Res. 2008;32:163–167. doi: 10.1016/j.leukres.2007.05.019. PubMed DOI
Renne C., Willenbrock K., Kuppers R., Hansmann M.L., Brauninger A. Autocrine- and paracrine-activated receptor tyrosine kinases in classic hodgkin lymphoma. Blood. 2005;105:4051–4059. doi: 10.1182/blood-2004-10-4008. PubMed DOI
Cader F.Z., Vockerodt M., Bose S., Nagy E., Brundler M.A., Kearns P., Murray P.G. The ebv oncogene lmp1 protects lymphoma cells from cell death through the collagen-mediated activation of ddr1. Blood. 2013;122:4237–4245. doi: 10.1182/blood-2013-04-499004. PubMed DOI
Levine P.H., Ablashi D.V., Berard C.W., Carbone P.P., Waggoner D.E., Malan L. Elevated antibody titers to epstein-barr virus in hodgkin’s disease. Cancer. 1971;27:416–421. doi: 10.1002/1097-0142(197102)27:2<416::AID-CNCR2820270227>3.0.CO;2-W. PubMed DOI
Mueller N., Evans A., Harris N.L., Comstock G.W., Jellum E., Magnus K., Orentreich N., Polk B.F., Vogelman J. Hodgkin’s disease and epstein-barr virus. Altered antibody pattern before diagnosis. N. Engl. J. Med. 1989;320:689–695. doi: 10.1056/NEJM198903163201103. PubMed DOI
Connelly R.R., Christine B.W. A cohort study of cancer following infectious mononucleosis. Cancer Res. 1974;34:1172–1178. PubMed
Rosdahl N., Larsen S.O., Clemmesen J. Hodgkin’s disease in patients with previous infectious mononucleosis: 30 years’ experience. BMJ. 1974;2:253–256. doi: 10.1136/bmj.2.5913.253. PubMed DOI PMC
Hjalgrim H., Smedby K.E., Rostgaard K., Molin D., Hamilton-Dutoit S., Chang E.T., Ralfkiaer E., Sundstrom C., Adami H.O., Glimelius B., et al. Infectious mononucleosis, childhood social environment, and risk of hodgkin lymphoma. Cancer Res. 2007;67:2382–2388. doi: 10.1158/0008-5472.CAN-06-3566. PubMed DOI
Hjalgrim H., Munksgaard L., Melbye M. Epstein-barr virus and hodgkin’s lymphoma. Ugeskr Laeger. 2002;164:5924–5927. PubMed
Poppema S., van Imhoff G., Torensma R., Smit J. Lymphadenopathy morphologically consistent with hodgkin’s disease associated with epstein-barr virus infection. Am. J. Clin. Pathol. 1985;84:385–390. doi: 10.1093/ajcp/84.3.385. PubMed DOI
Weiss L.M., Strickler J.G., Warnke R.A., Purtilo D.T., Sklar J. Epstein-barr viral DNA in tissues of hodgkin’s disease. Am. J. Pathol. 1987;129:86–91. PubMed PMC
Anagnostopoulos I., Herbst H., Niedobitek G., Stein H. Demonstration of monoclonal ebv genomes in hodgkin’s disease and ki-1-positive anaplastic large cell lymphoma by combined southern blot and in situ hybridization. Blood. 1989;74:810–816. PubMed
Weiss L.M., Movahed L.A., Warnke R.A., Sklar J. Detection of epstein-barr viral genomes in reed-sternberg cells of hodgkin’s disease. N. Engl. J. Med. 1989;320:502–506. doi: 10.1056/NEJM198902233200806. PubMed DOI
Wu T.-C., Mann R.B., Charache P., Hayward S.D., Staal S., Lambe B.C., Ambinder R.F. Detection of ebv gene expression in reed-sternberg cells of hodgkin’s disease. Int. J. Cancer. 1990;46:801–804. doi: 10.1002/ijc.2910460509. PubMed DOI
Coates P.J., Slavin G., D’Ardenne A.J. Persistence of epstein-barr virus in reed-sternberg cells throughout the course of hodgkin’s disease. J. Pathol. 1991;164:291–297. doi: 10.1002/path.1711640404. PubMed DOI
Glaser S.L., Lin R.J., Stewart S.L., Ambinder R.F., Jarrett R.F., Brousset P., Pallesen G., Gulley M.L., Khan G., O’Grady J., et al. Epstein-barr virus-associated hodgkin’s disease: Epidemiologic characteristics in international data. Int. J. Cancer. 1997;70:375–382. doi: 10.1002/(SICI)1097-0215(19970207)70:4<375::AID-IJC1>3.0.CO;2-T. PubMed DOI
Glaser S.L., Jarrett R.F. The epidemiology of Hodgkin’s disease. Baillieres Clin. Haematol. 1996;9:401–416. doi: 10.1016/S0950-3536(96)80018-7. PubMed DOI
Chang K.L., Albujar P.F., Chen Y.Y., Johnson R.M., Weiss L.M. High prevalence of epstein-barr virus in the reed-sternberg cells of hodgkin’s disease occurring in peru. Blood. 1993;81:496–501. PubMed
Weinreb M., Day P.J., Niggli F., Green E.K., Nyong’o A.O., Othieno-Abinya N.A., Riyat M.S., Raafat F., Mann J.R. The consistent association between epstein-barr virus and hodgkin’s disease in children in kenya. Blood. 1996;87:3828–3836. PubMed
Armstrong A.A., Alexander F.E., Cartwright R., Angus B., Krajewski A.S., Wright D.H., Brown I., Lee F., Kane E., Jarrett R.F. Epstein-barr virus and hodgkin’s disease: Further evidence for the three disease hypothesis. Leukemia. 1998;12:1272–1276. doi: 10.1038/sj.leu.2401097. PubMed DOI
Jarrett R.F., Gallagher A., Jones D.B., Alexander F.E., Krajewski A.S., Kelsey A., Adams J., Angus B., Gledhill S., Wright D.H., et al. Detection of epstein-barr virus genomes in hodgkin’s disease: Relation to age. J. Clin. Pathol. 1991;44:844–848. doi: 10.1136/jcp.44.10.844. PubMed DOI PMC
Flavell K.J., Biddulph J.P., Powell J.E., Parkes S.E., Redfern D., Weinreb M., Nelson P., Mann J.R., Young L.S., Murray P.G. South asian ethnicity and material deprivation increase the risk of epstein-barr virus infection in childhood hodgkin’s disease. Br. J. Cancer. 2001;85:350–356. doi: 10.1054/bjoc.2001.1872. PubMed DOI PMC
Westhoff Smith D., Sugden B. Potential cellular functions of epstein-barr nuclear antigen 1 (ebna1) of epstein-barr virus. Viruses. 2013;5:226–240. doi: 10.3390/v5010226. PubMed DOI PMC
Frappier L. Contributions of epstein-barr nuclear antigen 1 (ebna1) to cell immortalization and survival. Viruses. 2012;4:1537–1547. doi: 10.3390/v4091537. PubMed DOI PMC
Frappier L. Ebna1 and host factors in epstein-barr virus latent DNA replication. Curr. Opin. Virol. 2012;2:733–739. doi: 10.1016/j.coviro.2012.09.005. PubMed DOI
Frappier L. The epstein-barr virus ebna1 protein. Scientifica (Cairo) 2012;2012:438204. doi: 10.6064/2012/438204. PubMed DOI PMC
Kennedy G., Komano J., Sugden B. Epstein-barr virus provides a survival factor to burkitt’s lymphomas. Proc. Natl. Acad. Sci. USA. 2003;100:14269–14274. doi: 10.1073/pnas.2336099100. PubMed DOI PMC
Saridakis V., Sheng Y., Sarkari F., Holowaty M.N., Shire K., Nguyen T., Zhang R.G., Liao J., Lee W., Edwards A.M., et al. Structure of the p53 binding domain of hausp/usp7 bound to epstein-barr nuclear antigen 1 implications for ebv-mediated immortalization. Mol. Cell. 2005;18:25–36. doi: 10.1016/j.molcel.2005.02.029. PubMed DOI
Kube D., Vockerodt M., Weber O., Hell K., Wolf J., Haier B., Grasser F.A., Muller-Lantzsch N., Kieff E., Diehl V., et al. Expression of epstein-barr virus nuclear antigen 1 is associated with enhanced expression of cd25 in the hodgkin cell line l428. J. Virol. 1999;73:1630–1636. PubMed PMC
Flavell J.R., Baumforth K.R., Wood V.H., Davies G.L., Wei W., Reynolds G.M., Morgan S., Boyce A., Kelly G.L., Young L.S., et al. Down-regulation of the tgf-beta target gene, ptprk, by the epstein-barr virus encoded ebna1 contributes to the growth and survival of hodgkin lymphoma cells. Blood. 2008;111:292–301. doi: 10.1182/blood-2006-11-059881. PubMed DOI
Wood V.H., O’Neil J.D., Wei W., Stewart S.E., Dawson C.W., Young L.S. Epstein-barr virus-encoded ebna1 regulates cellular gene transcription and modulates the stat1 and tgfbeta signaling pathways. Oncogene. 2007;26:4135–4147. doi: 10.1038/sj.onc.1210496. PubMed DOI
Baumforth K.R., Birgersdotter A., Reynolds G.M., Wei W., Kapatai G., Flavell J.R., Kalk E., Piper K., Lee S., Machado L., et al. Expression of the epstein-barr virus-encoded epstein-barr virus nuclear antigen 1 in hodgkin’s lymphoma cells mediates up-regulation of ccl20 and the migration of regulatory t cells. Am. J. Pathol. 2008;173:195–204. doi: 10.2353/ajpath.2008.070845. PubMed DOI PMC
Wilson J.B., Bell J.L., Levine A.J. Expression of epstein-barr virus nuclear antigen-1 induces b cell neoplasia in transgenic mice. EMBO J. 1996;15:3117–3126. PubMed PMC
Tsimbouri P., Drotar M.E., Coy J.L., Wilson J.B. Bcl-xl and rag genes are induced and the response to il-2 enhanced in emuebna-1 transgenic mouse lymphocytes. Oncogene. 2002;21:5182–5187. doi: 10.1038/sj.onc.1205490. PubMed DOI
Kang M.S., Lu H., Yasui T., Sharpe A., Warren H., Cahir-McFarland E., Bronson R., Hung S.C., Kieff E. Epstein-barr virus nuclear antigen 1 does not induce lymphoma in transgenic fvb mice. Proc. Natl. Acad. Sci. USA. 2005;102:820–825. doi: 10.1073/pnas.0408774102. PubMed DOI PMC
Coppotelli G., Mughal N., Callegari S., Sompallae R., Caja L., Luijsterburg M.S., Dantuma N.P., Moustakas A., Masucci M.G. The epstein-barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group a proteins. Nucleic Acids Res. 2013;41:2950–2962. doi: 10.1093/nar/gkt032. PubMed DOI PMC
Dresang L.R., Vereide D.T., Sugden B. Identifying sites bound by epstein-barr virus nuclear antigen 1 (ebna1) in the human genome: Defining a position-weighted matrix to predict sites bound by ebna1 in viral genomes. J. Virol. 2009;83:2930–2940. doi: 10.1128/JVI.01974-08. PubMed DOI PMC
Lu F., Wikramasinghe P., Norseen J., Tsai K., Wang P., Showe L., Davuluri R.V., Lieberman P.M. Genome-wide analysis of host-chromosome binding sites for epstein-barr virus nuclear antigen 1 (ebna1) Virol. J. 2010;7:262. doi: 10.1186/1743-422X-7-262. PubMed DOI PMC
Canaan A., Haviv I., Urban A.E., Schulz V.P., Hartman S., Zhang Z., Palejev D., Deisseroth A.B., Lacy J., Snyder M., et al. Ebna1 regulates cellular gene expression by binding cellular promoters. Proc. Natl. Acad. Sci. USA. 2009;106:22421–22426. doi: 10.1073/pnas.0911676106. PubMed DOI PMC
Tempera I., De Leo A., Kossenkov A.V., Cesaroni M., Song H., Dawany N., Showe L., Lu F., Wikramasinghe P., Lieberman P.M. Identification of mef2b, ebf1, and il6r as direct gene targets of epstein-barr virus (ebv) nuclear antigen 1 critical for ebv-infected b-lymphocyte survival. J. Virol. 2016;90:345–355. doi: 10.1128/JVI.02318-15. PubMed DOI PMC
Li N., Thompson S., Schultz D.C., Zhu W., Jiang H., Luo C., Lieberman P.M. Discovery of selective inhibitors against ebna1 via high throughput in silico virtual screening. PLoS ONE. 2010;5:e10126. doi: 10.1371/journal.pone.0010126. PubMed DOI PMC
Thompson S., Messick T., Schultz D.C., Reichman M., Lieberman P.M. Development of a high-throughput screen for inhibitors of epstein-barr virus ebna1. J. Biomol. Screen. 2010;15:1107–1115. doi: 10.1177/1087057110379154. PubMed DOI PMC
Jiang L., Lui Y.L., Li H., Chan C.F., Lan R., Chan W.L., Lau T.C., Tsao G.S., Mak N.K., Wong K.L. Ebna1-specific luminescent small molecules for the imaging and inhibition of latent ebv-infected tumor cells. Chem. Commun. 2014;50:6517–6519. doi: 10.1039/C4CC01589D. PubMed DOI
Taylor G.S., Jia H., Harrington K., Lee L.W., Turner J., Ladell K., Price D.A., Tanday M., Matthews J., Roberts C., et al. A recombinant modified vaccinia ankara vaccine encoding epstein-barr virus (ebv) target antigens: A phase i trial in uk patients with ebv-positive cancer. Clin. Cancer Res. 2014;20:5009–5022. doi: 10.1158/1078-0432.CCR-14-1122-T. PubMed DOI PMC
Jones K., Nourse J.P., Morrison L., Nguyen-Van D., Moss D.J., Burrows S.R., Gandhi M.K. Expansion of ebna1-specific effector t cells in posttransplantation lymphoproliferative disorders. Blood. 2010;116:2245–2252. doi: 10.1182/blood-2010-03-274076. PubMed DOI
Icheva V., Kayser S., Wolff D., Tuve S., Kyzirakos C., Bethge W., Greil J., Albert M.H., Schwinger W., Nathrath M., et al. Adoptive transfer of epstein-barr virus (ebv) nuclear antigen 1-specific t cells as treatment for ebv reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J. Clin. Oncol. 2013;31:39–48. doi: 10.1200/JCO.2011.39.8495. PubMed DOI
Lista M.J., Martins R.P., Billant O., Contesse M.A., Findakly S., Pochard P., Daskalogianni C., Beauvineau C., Guetta C., Jamin C., et al. Nucleolin directly mediates epstein-barr virus immune evasion through binding to g-quadruplexes of ebna1 mrna. Nat. Commun. 2017;8:16043. doi: 10.1038/ncomms16043. PubMed DOI PMC
Lam N., Sugden B. Cd40 and its viral mimic, lmp1: Similar means to different ends. Cell. Signal. 2003;15:9–16. doi: 10.1016/S0898-6568(02)00083-9. PubMed DOI
Kaykas A., Worringer K., Sugden B. Cd40 and lmp-1 both signal from lipid rafts but lmp-1 assembles a distinct, more efficient signaling complex. Embo J. 2001;20:2641–2654. doi: 10.1093/emboj/20.11.2641. PubMed DOI PMC
Bishop G.A., Hostager B.S. Signaling by cd40 and its mimics in b cell activation. Immunol. Res. 2001;24:97–110. doi: 10.1385/IR:24:2:097. PubMed DOI
Panagopoulos D., Victoratos P., Alexiou M., Kollias G., Mosialos G. Comparative analysis of signal transduction by cd40 and the epstein-barr virus oncoprotein lmp1 in vivo. J. Virol. 2004;78:13253–13261. doi: 10.1128/JVI.78.23.13253-13261.2004. PubMed DOI PMC
Kilger E., Kieser A., Baumann M., Hammerschmidt W. Epstein-barr virus-mediated b-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated cd40 receptor. EMBO J. 1998;17:1700–1709. doi: 10.1093/emboj/17.6.1700. PubMed DOI PMC
Gires O., Kohlhuber F., Kilger E., Baumann M., Kieser A., Kaiser C., Zeidler R., Scheffer B., Ueffing M., Hammerschmidt W. Latent membrane protein 1 of epstein-barr virus interacts with jak3 and activates stat proteins. EMBO J. 1999;18:3064–3073. doi: 10.1093/emboj/18.11.3064. PubMed DOI PMC
Eliopoulos A.G., Young L.S. Activation of the cjun n-terminal kinase (jnk) pathway by the epstein-barr virus-encoded latent membrane protein 1 (lmp1) Oncogene. 1998;16:1731–1742. doi: 10.1038/sj.onc.1201694. PubMed DOI
Laherty C.D., Hu H.M., Opipari A.W., Wang F., Dixit V.M. The epstein-barr virus lmp1 gene product induces a20 zinc finger protein expression by activating nuclear factor kappa b. J. Biol. Chem. 1992;267:24157–24160. PubMed
Huen D.S., Henderson S.A., Croom-Carter D., Rowe M. The epstein-barr virus latent membrane protein-1 (lmp1) mediates activation of nf-kappa b and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 1995;10:549–560. PubMed
Schumacher M.A., Schmitz R., Brune V., Tiacci E., Doring C., Hansmann M.L., Siebert R., Kuppers R. Mutations in the genes coding for the nf-kappab regulating factors ikappabalpha and a20 are uncommon in nodular lymphocyte-predominant hodgkin’s lymphoma. Haematologica. 2010;95:153–157. doi: 10.3324/haematol.2009.010157. PubMed DOI PMC
Etzel B.M., Gerth M., Chen Y., Wunsche E., Facklam T., Beck J.F., Guntinas-Lichius O., Petersen I. Mutation analysis of tumor necrosis factor alpha-induced protein 3 gene in hodgkin lymphoma. Pathol. Res. Pract. 2017;213:256–260. doi: 10.1016/j.prp.2016.11.001. PubMed DOI
Vockerodt M., Morgan S.L., Kuo M., Wei W., Chukwuma M.B., Arrand J.R., Kube D., Gordon J., Young L.S., Woodman C.B., et al. The epstein-barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre b cells towards a hodgkin’s reed-sternberg-like phenotype. J. Pathol. 2008;216:83–92. doi: 10.1002/path.2384. PubMed DOI
Anderton J.A., Bose S., Vockerodt M., Vrzalikova K., Wei W., Kuo M., Helin K., Christensen J., Rowe M., Murray P.G., et al. The h3k27me3 demethylase, kdm6b, is induced by epstein-barr virus and over-expressed in hodgkin’s lymphoma. Oncogene. 2011;30:2037–2043. doi: 10.1038/onc.2010.579. PubMed DOI
Leonard S., Gordon N., Smith N., Rowe M., Murray P.G., Woodman C.B. Arginine methyltransferases are regulated by epstein-barr virus in b cells and are differentially expressed in hodgkin’s lymphoma. Pathogens. 2012;1:52–64. doi: 10.3390/pathogens1010052. PubMed DOI PMC
Leonard S., Wei W., Anderton J., Vockerodt M., Rowe M., Murray P.G., Woodman C.B. Epigenetic and transcriptional changes which follow epstein-barr virus infection of germinal center b cells and their relevance to the pathogenesis of hodgkin’s lymphoma. J. Virol. 2011;85:9568–9577. doi: 10.1128/JVI.00468-11. PubMed DOI PMC
Martin K.A., Lupey L.N., Tempera I. Epstein-barr virus oncoprotein lmp1 mediates epigenetic changes in host gene expression through parp1. J. Virol. 2016;90:8520–8530. doi: 10.1128/JVI.01180-16. PubMed DOI PMC
Motsch N., Pfuhl T., Mrazek J., Barth S., Grasser F.A. Epstein-barr virus-encoded latent membrane protein 1 (lmp1) induces the expression of the cellular microrna mir-146a. RNA Biol. 2007;4:131–137. doi: 10.4161/rna.4.3.5206. PubMed DOI
Cameron J.E., Yin Q., Fewell C., Lacey M., McBride J., Wang X., Lin Z., Schaefer B.C., Flemington E.K. Epstein-barr virus latent membrane protein 1 induces cellular microrna mir-146a, a modulator of lymphocyte signaling pathways. J. Virol. 2008;82:1946–1958. doi: 10.1128/JVI.02136-07. PubMed DOI PMC
Lu F., Weidmer A., Liu C.G., Volinia S., Croce C.M., Lieberman P.M. Epstein-barr virus-induced mir-155 attenuates nf-kappab signaling and stabilizes latent virus persistence. J. Virol. 2008;82:10436–10443. doi: 10.1128/JVI.00752-08. PubMed DOI PMC
Anastasiadou E., Boccellato F., Vincenti S., Rosato P., Bozzoni I., Frati L., Faggioni A., Presutti C., Trivedi P. Epstein-barr virus encoded lmp1 downregulates tcl1 oncogene through mir-29b. Oncogene. 2010;29:1316–1328. doi: 10.1038/onc.2009.439. PubMed DOI
Li G., Wu Z., Peng Y., Liu X., Lu J., Wang L., Pan Q., He M.L., Li X.P. Microrna-10b induced by epstein-barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett. 2010;299:29–36. doi: 10.1016/j.canlet.2010.07.021. PubMed DOI
Cahir-McFarland E.D., Carter K., Rosenwald A., Giltnane J.M., Henrickson S.E., Staudt L.M., Kieff E. Role of nf-kappa b in cell survival and transcription of latent membrane protein 1 - expressing or epstein-barr virus latency iii-infected cells. J. Virol. 2004;78:4108–4119. doi: 10.1128/JVI.78.8.4108-4119.2004. PubMed DOI PMC
Dutton A., O’Neil J.D., Milner A.E., Reynolds G.M., Starczynski J., Crocker J., Young L.S., Murray P.G. Expression of the cellular flice-inhibitory protein (c-flip) protects hodgkin’s lymphoma cells from autonomous fas-mediated death. Proc. Natl. Acad. Sci. USA. 2004;101:6611–6616. doi: 10.1073/pnas.0400765101. PubMed DOI PMC
Lajoie V., Lemieux B., Sawan B., Lichtensztejn D., Lichtensztejn Z., Wellinger R., Mai S., Knecht H. Lmp1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood. 2015;125:2101–2110. doi: 10.1182/blood-2014-08-594176. PubMed DOI PMC
Knecht H., Mai S. Lmp1 and dynamic progressive telomere dysfunction: A major culprit in ebv-associated hodgkin’s lymphoma. Viruses. 2017;9:164. doi: 10.3390/v9070164. PubMed DOI PMC
Vrzalikova K., Vockerodt M., Leonard S., Bell A., Wei W., Schrader A., Wright K.L., Kube D., Rowe M., Woodman C.B., et al. Down-regulation of blimp1α by the ebv oncogene, lmp-1, disrupts the plasma cell differentiation program and prevents viral replication in b cells: Implications for the pathogenesis of ebv-associated b-cell lymphomas. Blood. 2011;117:5907–5917. doi: 10.1182/blood-2010-09-307710. PubMed DOI PMC
Sueur C., Lupo J., Mas P., Morand P., Boyer V. Difference in cytokine production and cell cycle progression induced by epstein-barr virus lmp1 deletion variants in kmh2, a hodgkin lymphoma cell line. Virol. J. 2014;11:94. doi: 10.1186/1743-422X-11-94. PubMed DOI PMC
Kis L.L., Takahara M., Nagy N., Klein G., Klein E. Cytokine mediated induction of the major epstein-barr virus (ebv)-encoded transforming protein, lmp-1. Immunol. Lett. 2006;104:83–88. doi: 10.1016/j.imlet.2005.11.003. PubMed DOI
Dukers D.F., Jaspars L.H., Vos W., Oudejans J.J., Hayes D., Cillessen S., Middeldorp J.M., Meijer C.J. Quantitative immunohistochemical analysis of cytokine profiles in epstein-barr virus-positive and -negative cases of hodgkin’s disease. J. Pathol. 2000;190:143–149. doi: 10.1002/(SICI)1096-9896(200002)190:2<143::AID-PATH519>3.0.CO;2-5. PubMed DOI
Rickinson A.B., Moss D.J. Human cytotoxic t lymphocyte responses to epstein-barr virus infection. Annu. Rev. Immunol. 1997;15:405–431. doi: 10.1146/annurev.immunol.15.1.405. PubMed DOI
Tsang M.L., Munz C. Cytolytic t lymphocytes from hla-b8+ donors frequently recognize the hodgkin’s lymphoma associated latent membrane protein 2 of epstein barr virus. Herpesviridae. 2011;2:4. doi: 10.1186/2042-4280-2-4. PubMed DOI PMC
Bollard C.M., Gottschalk S., Huls M.H., Molldrem J., Przepiorka D., Rooney C.M., Heslop H.E. In vivo expansion of lmp 1- and 2-specific t-cells in a patient who received donor-derived ebv-specific t-cells after allogeneic stem cell transplantation. Leuk. Lymphoma. 2006;47:837–842. doi: 10.1080/10428190600604724. PubMed DOI
Duraiswamy J., Sherritt M., Thomson S., Tellam J., Cooper L., Connolly G., Bharadwaj M., Khanna R. Therapeutic lmp1 polyepitope vaccine for ebv-associated hodgkin disease and nasopharyngeal carcinoma. Blood. 2003;101:3150–3156. doi: 10.1182/blood-2002-10-3092. PubMed DOI
Gottschalk S., Edwards O.L., Sili U., Huls M.H., Goltsova T., Davis A.R., Heslop H.E., Rooney C.M. Generating ctls against the subdominant epstein-barr virus lmp1 antigen for the adoptive immunotherapy of ebv-associated malignancies. Blood. 2003;101:1905–1912. doi: 10.1182/blood-2002-05-1514. PubMed DOI
Chapman A.L., Rickinson A.B., Thomas W.A., Jarrett R.F., Crocker J., Lee S.P. Epstein-barr virus-specific cytotoxic t lymphocyte responses in the blood and tumor site of hodgkin’s disease patients: Implications for a t-cell-based therapy. Cancer Res. 2001;61:6219–6226. PubMed
Khanna R., Burrows S.R., Nicholls J., Poulsen L.M. Identification of cytotoxic t cell epitopes within epstein-barr virus (ebv) oncogene latent membrane protein 1 (lmp1): Evidence for hla a2 supertype-restricted immune recognition of ebv-infected cells by lmp1-specific cytotoxic t lymphocytes. Eur. J. Immunol. 1998;28:451–458. doi: 10.1002/(SICI)1521-4141(199802)28:02<451::AID-IMMU451>3.0.CO;2-U. PubMed DOI
Murray P.G., Constandinou C.M., Crocker J., Young L.S., Ambinder R.F. Analysis of major histocompatibility complex class i, tap expression, and lmp2 epitope sequence in epstein-barr virus-positive hodgkin’s disease. Blood. 1998;92:2477–2483. PubMed
Lee S.P., Constandinou C.M., Thomas W.A., Croom-Carter D., Blake N.W., Murray P.G., Crocker J., Rickinson A.B. Antigen presenting phenotype of hodgkin reed-sternberg cells: Analysis of the hla class i processing pathway and the effects of interleukin-10 on epstein-barr virus-specific cytotoxic t-cell recognition. Blood. 1998;92:1020–1030. PubMed
Tsang C.W., Lin X., Gudgeon N.H., Taylor G.S., Jia H., Hui E.P., Chan A.T., Lin C.K., Rickinson A.B. Cd4+ t-cell responses to epstein-barr virus nuclear antigen ebna1 in chinese populations are highly focused on novel c-terminal domain-derived epitopes. J. Virol. 2006;80:8263–8266. doi: 10.1128/JVI.00400-06. PubMed DOI PMC
Gurer C., Strowig T., Brilot F., Pack M., Trumpfheller C., Arrey F., Park C.G., Steinman R.M., Munz C. Targeting the nuclear antigen 1 of epstein-barr virus to the human endocytic receptor dec-205 stimulates protective t-cell responses. Blood. 2008;112:1231–1239. doi: 10.1182/blood-2008-03-148072. PubMed DOI PMC
Chen B.J., Chapuy B., Ouyang J., Sun H.H., Roemer M.G., Xu M.L., Yu H., Fletcher C.D., Freeman G.J., Shipp M.A., et al. Pd-l1 expression is characteristic of a subset of aggressive b-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 2013;19:3462–3473. doi: 10.1158/1078-0432.CCR-13-0855. PubMed DOI PMC
Green M.R., Rodig S., Juszczynski P., Ouyang J., Sinha P., O’Donnell E., Neuberg D., Shipp M.A. Constitutive ap-1 activity and ebv infection induce pd-l1 in hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin. Cancer Res. 2012;18:1611–1618. doi: 10.1158/1078-0432.CCR-11-1942. PubMed DOI PMC
Green M.R., Monti S., Rodig S.J., Juszczynski P., Currie T., O’Donnell E., Chapuy B., Takeyama K., Neuberg D., Golub T.R., et al. Integrative analysis reveals selective 9p24.1 amplification, increased pd-1 ligand expression, and further induction via jak2 in nodular sclerosing hodgkin lymphoma and primary mediastinal large b-cell lymphoma. Blood. 2010;116:3268–3277. doi: 10.1182/blood-2010-05-282780. PubMed DOI PMC
Paydas S., Bagir E., Seydaoglu G., Ercolak V., Ergin M. Programmed death-1 (pd-1), programmed death-ligand 1 (pd-l1), and ebv-encoded rna (eber) expression in hodgkin lymphoma. Ann. Hematol. 2015;94:1545–1552. doi: 10.1007/s00277-015-2403-2. PubMed DOI
Kis L.L., Salamon D., Persson E.K., Nagy N., Scheeren F.A., Spits H., Klein G., Klein E. Il-21 imposes a type ii ebv gene expression on type iii and type i b cells by the repression of c- and activation of lmp-1-promoter. Proc. Natl. Acad. Sci. USA. 2010;107:872–877. doi: 10.1073/pnas.0912920107. PubMed DOI PMC
Kis L.L., Gerasimcik N., Salamon D., Persson E.K., Nagy N., Klein G., Severinson E., Klein E. Stat6 signaling pathway activated by the cytokines il-4 and il-13 induces expression of the epstein-barr virus-encoded protein lmp-1 in absence of ebna-2: Implications for the type ii ebv latent gene expression in hodgkin lymphoma. Blood. 2011;117:165–174. doi: 10.1182/blood-2010-01-265272. PubMed DOI
Merchant M., Swart R., Katzman R.B., Ikeda M., Ikeda A., Longnecker R., Dykstra M.L., Pierce S.K. The effects of the epstein-barr virus latent membrane protein 2a on b cell function. Int. Rev. Immunol. 2001;20:805–835. doi: 10.3109/08830180109045591. PubMed DOI
Fukuda M., Longnecker R. Epstein-barr virus latent membrane protein 2a mediates transformation through constitutive activation of the ras/pi3-k/akt pathway. J. Virol. 2007;81:9299–9306. doi: 10.1128/JVI.00537-07. PubMed DOI PMC
Mancao C., Altmann M., Jungnickel B., Hammerschmidt W. Rescue of “crippled” germinal center b cells from apoptosis by epstein-barr virus. Blood. 2005;106:4339–4344. doi: 10.1182/blood-2005-06-2341. PubMed DOI PMC
Chaganti S., Bell Ai A.I., Pastor N.B., Milner A.E., Drayson M., Gordon J., Rickinson A.B. Epstein-barr virus infection in vitro can rescue germinal center b cells with inactivated immunoglobulin genes. Blood. 2005;106:4249–4252. doi: 10.1182/blood-2005-06-2327. PubMed DOI
Bechtel D., Kurth J., Unkel C., Küppers R. Transformation of bcr-deficient germinal-center b cells bybv supports a major role of the virus in the pathogenesis of hodgkin and posttransplantation lymphomas. Blood. 2005;106:4345–4350. doi: 10.1182/blood-2005-06-2342. PubMed DOI
Mancao C., Hammerschmidt W. Epstein-barr virus latent membrane protein 2a is a b-cell receptor mimic and essential for b-cell survival. Blood. 2007;110:3715–3721. doi: 10.1182/blood-2007-05-090142. PubMed DOI PMC
Vockerodt M., Wei W., Nagy E., Prouzova Z., Schrader A., Kube D., Rowe M., Woodman C.B., Murray P.G. Suppression of the lmp2a target gene, egr-1, protects hodgkin’s lymphoma cells from entry to the ebv lytic cycle. J. Pathol. 2013;230:399–409. doi: 10.1002/path.4198. PubMed DOI
Portis T., Longnecker R. Epstein-barr virus (ebv) lmp2a alters normal transcriptional regulation following b-cell receptor activation. Virology. 2004;318:524–533. doi: 10.1016/j.virol.2003.09.017. PubMed DOI
Portis T., Dyck P., Longnecker R. Epstein-barr virus (ebv) lmp2a induces alterations in gene transcription similar to those observed in reed-sternberg cells of hodgkin lymphoma. Blood. 2003;102:4166–4178. doi: 10.1182/blood-2003-04-1018. PubMed DOI
Portis T., Longnecker R. Epstein-barr virus lmp2a interferes with global transcription factor regulation when expressed during b-lymphocyte development. J. Virol. 2003;77:105–114. doi: 10.1128/JVI.77.1.105-114.2003. PubMed DOI PMC
Anderson L.J., Longnecker R. Epstein-barr virus latent membrane protein 2a exploits notch1 to alter b-cell identity in vivo. Blood. 2009;113:108–116. doi: 10.1182/blood-2008-06-160937. PubMed DOI PMC
Chang R.A., Miller S.D., Longnecker R. Epstein-barr virus latent membrane protein 2a exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function. Sci. Rep. 2012;2:353. doi: 10.1038/srep00353. PubMed DOI PMC
Kulwichit W., Edwards R.H., Davenport E.M., Baskar J.F., Godfrey V., Raab-Traub N. Expression of the epstein-barr virus latent membrane protein 1 induces b cell lymphoma in transgenic mice. Proc. Natl. Acad. Sci. USA. 1998;95:11963–11968. doi: 10.1073/pnas.95.20.11963. PubMed DOI PMC
Zhang B., Kracker S., Yasuda T., Casola S., Vanneman M., Homig-Holzel C., Wang Z., Derudder E., Li S., Chakraborty T., et al. Immune surveillance and therapy of lymphomas driven by epstein-barr virus protein lmp1 in a mouse model. Cell. 2012;148:739–751. doi: 10.1016/j.cell.2011.12.031. PubMed DOI PMC
Vrazo A.C., Chauchard M., Raab-Traub N., Longnecker R. Epstein-barr virus lmp2a reduces hyperactivation induced by lmp1 to restore normal b cell phenotype in transgenic mice. PLoS Pathog. 2012;8:e1002662. doi: 10.1371/journal.ppat.1002662. PubMed DOI PMC
Ma S.D., Tsai M.H., Romero-Masters J.C., Ranheim E.A., Huebner S.M., Bristol J., Delecluse H.J., Kenney S.C. Lmp1 and lmp2a collaborate to promote epstein-barr virus (ebv)-induced b cell lymphomas in a cord blood-humanized mouse model but are not essential. J. Virol. 2017 doi: 10.1128/JVI.01928-16. PubMed DOI PMC
Minamitani T., Ma Y., Zhou H., Kida H., Tsai C.Y., Obana M., Okuzaki D., Fujio Y., Kumanogoh A., Zhao B., et al. Mouse model of epstein-barr virus lmp1- and lmp2a-driven germinal center b-cell lymphoproliferative disease. Proc. Natl. Acad. Sci. USA. 2017;114:4751–4756. doi: 10.1073/pnas.1701836114. PubMed DOI PMC