Cytoskeleton in the Parasitic Plant Cuscuta During Germination and Prehaustorium Formation

. 2018 ; 9 () : 794. [epub] 20180613

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29971075

Although cytoskeleton is a driving force for cell division and growth in higher plants, there is little evidence about its components in parasitic angiosperms. Microtubules and actin filaments in cells of shoot apical meristem and root-like structure of stem holoparasites European (C. europaea L.) and Eastern (C. monogyna Vahl.) dodders, as well as in prehaustorium, the specific organ adapted to parasitism, were visualized for the first time by immunolabeling and fluorescence microscopy. The significance of cytoskeletal elements during germination and prehaustorium formation was addressed by treatments with taxol, oryzalin, latrunculin B, cytochalasin B/D, jasplakinolide, and 2,3-butanedione monoxime. In shoot apical meristem many dividing cells were observed, in contrast to root-like structure, devoid of cell divisions. Cortical microtubules were oriented transversely and/or obliquely, while actin filaments were randomly distributed in cells of both organs. Furthermore, longitudinal cortical microtubules were present in digitate cells of prehaustorium, and transverse arrays were found in its file cells. Long and short random actin filaments were also observed in prehaustorium cells. Thus, it was shown that the cytoskeleton in dodder shoot cells is organized in a similar way to non-parasitic dicots, while cytoskeletal organization has some peculiarities in quickly senescing root-like structure and prehaustorium.

Zobrazit více v PubMed

Alakonya A., Kumar R., Koenig D., Kimura S., Townsley B., Runo S., et al. (2012). Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism. Plant Cell 24 3153–3166. 10.1105/tpc.112.099994 PubMed DOI PMC

Baluška F., Jasik J., Edelmann H. G., Salajová T., Volkmann D. (2001). Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev. Biol. 231 113–124. 10.1006/dbio.2000.0115 PubMed DOI

Baluška F., Šamaj J., Volkmann D., Barlow P. W. (1997). Impact of taxol-mediated stabilization of microtubules on nuclear morphology, ploidy levels and cell growth in maize roots. Biol. Cell 89 221–231. 10.1016/S0248-4900(97)80038-X PubMed DOI

Bartels P. G., Hilton J. L. (1973). Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3 462–472. 10.1016/0048-3575(73)90072-2 DOI

Bibikova T. N., Blancaflor E. B., Gilroy S. (1999). Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J. Cell Mol. Biol. 17 657–665. 10.1046/j.1365-313X.1999.00415.x PubMed DOI

Cai C., Henty-Ridilla J. L., Szymanski D. B., Staiger C. J. (2014). Arabidopsis myosin XI: a motor rules the tracks. Plant Physiol. 166 1359–1370. 10.1104/pp.114.244335 PubMed DOI PMC

Costea M., García M. A., Stefanović S. (2015). A phylogenetically based infrageneric classification of the parasitic plant genus Cuscuta (Dodders, Convolvulaceae). Syst. Bot. 40 269–285. 10.1600/036364415X686567 DOI

Coué M., Brenner S. L., Spector I., Korn E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Lett. 213 316–318. 10.1016/0014-5793(87)81513-2 PubMed DOI

Dawson J. H., Musselman L. J., Wolswinkel P., Dörr I. (1994). Biology and control of Cuscuta. Rev. Weed Sci. 6 265–317.

Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., et al. (1993). Cellular organisation of the Arabidopsis thaliana root. Development 119 71–84. PubMed

de Almeida Engler J., Rodiuc N., Smertenko A., Abad P. (2010). Plant actin cytoskeleton remodeling by plant parasitic nematodes. Plant Signal. Behav. 5 213–217. 10.4161/psb.5.3.10741 PubMed DOI PMC

Estabrook E. M., Yoder J. I. (1998). Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 116 1–7. 10.1104/pp.116.1.1 DOI

Florea C. S., Timko M. P. (1997). Actin genes with unusual organization in the parasitic angiosperm Striga asiatica L. (Kuntze). Gene 186 127–133. 10.1016/S0378-1119(96)00695-6 PubMed DOI

Fukuda H., Kobayashi H. (1989). Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev. Growth Differ. 31 9–16. 10.1111/j.1440-169X.1989.00009.x PubMed DOI

Galatis B., Apostolakos P. (2004). The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol. 161 613–639. 10.1046/j.1469-8137.2003.00986.x PubMed DOI

García M. A., Costea M., Kuzmina M., Stefanović S. (2014). Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am. J. Bot. 101 670–690. 10.3732/ajb.1300449 PubMed DOI

Gibbon B. C., Kovar D. R., Staiger C. J. (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11 2349–2363. 10.1105/tpc.11.12.2349 PubMed DOI PMC

Gutierrez R., Lindeboom J. J., Paredez A. R., Emons A. M. C., Ehrhardt D. W. (2009). Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11 797–806. 10.1038/ncb1886 PubMed DOI

Henty-Ridilla J. L., Li J., Blanchoin L., Staiger C. J. (2013). Actin dynamics in the cortical array of plant cells. Curr. Opin. Plant Biol. 16 678–687. 10.1016/j.pbi.2013.10.012 PubMed DOI

Hoffman J. C., Vaughn K. C. (1994). Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179 16–25. 10.1007/BF01360733 DOI

Hoffmann A., Nebenführ A. (2004). Dynamic rearrangements of transvacuolar strands in BY-2 cells imply a role of myosin in remodeling the plant actin cytoskeleton. Protoplasma 224 201–210. 10.1007/s00709-004-0068-0 PubMed DOI

Holzinger A., Blaas K. (2016). Actin-dynamics in plant cells: the function of actin perturbing substances jasplakinolide, chondramides, phalloidin, cytochalasins, and latrunculins. Methods Mol. Biol. 1365 243–261. 10.1007/978-1-4939-3124-8_13 PubMed DOI PMC

Kaštier P., Martinčová M., Fiala R., Blehová A. (2017). Transient expression of green fluorescent protein in parasitic dodder as a tool for studying of cytoskeleton. Nova Biotechnol. Chim. 16 20–25. 10.1515/nbec-2017-0003 DOI

Khatau S. B., Hale C. M., Stewart-Hutchinson P. J., Patel M. S., Stewart C. L., Searson P. C., et al. (2009). A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106 19017–19022. 10.1073/pnas.0908686106 PubMed DOI PMC

Kim G., Westwood J. H. (2015). Macromolecule exchange in Cuscuta–host plant interactions. Curr. Opin. Plant Biol. 26 20–25. 10.1016/j.pbi.2015.05.012 PubMed DOI

Kost B., Bao Y.-Q., Chua N.-H. (2002). Cytoskeleton and plant organogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357 777–789. 10.1098/rstb.2002.1090 PubMed DOI PMC

Kuijt J., Toth R. (1976). Ultrastructure of angiosperm haustoria—a review. Ann. Bot. 40 1121–1130. 10.1093/oxfordjournals.aob.a085232 DOI

Lapin D., Van den Ackerveken G. (2013). Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci. 18 546–554. 10.1016/j.tplants.2013.05.005 PubMed DOI

Lee K. B. (2007). Structure and development of the upper haustorium in the parasitic flowering plant Cuscuta japonica (Convolvulaceae). Am. J. Bot. 94 737–745. 10.3732/ajb.94.5.737 PubMed DOI

Lee K. B., Park J.-B., Lee S. (2000). Morphology and anatomy of mature embryos and seedlings in parasitic angiosperm Cuscuta japonica. J. Plant Biol. 43 22–27. 10.1007/BF03031032 DOI

Lee R. Q., Lee K. F. (1989). Parasitic Size and superstrate effects on electromagnetic coupled patch antennas. Electromagnetics 9 395–404. 10.1080/02726348908915246 DOI

Lyshede O. B. (1985). Morphological and anatomical features of Cuscuta pedicellata and C. campestris. Nord. J. Bot. 5 65–77. 10.1111/j.1756-1051.1985.tb02074.x DOI

Lyshede O. B. (1986). Fine-structural features of the tuberous radicular end of the seedling of Cuscuta pedicellata. Ber. Dtsch. Bot. Ges. 99 105–109. 10.1111/j.1438-8677.1986.tb02951.x DOI

Mao G., Buschmann H., Doonan J. H., Lloyd C. W. (2006). The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J. Cell Sci. 119 753–758. 10.1242/jcs.02813 PubMed DOI

Mathur J., Chua N. H. (2000). Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12 465–477. 10.1105/tpc.12.4.465 PubMed DOI PMC

Mathur J., Hülskamp M. (2002). Microtubules and microfilaments in cell morphogenesis in higher plants. Curr. Biol. 12 R669–R676. 10.1016/S0960-9822(02)01164-8 PubMed DOI

Morejohn L. C., Bureau T. E., Molè-Bajer J., Bajer A. S., Fosket D. E. (1987). Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172 252–264. 10.1007/BF00394595 PubMed DOI

Murashige T., Skoog F. (1962). A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI

Oda Y., Mimura T., Hasezawa S. (2005). Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol. 137 1027–1036. 10.1104/pp.104.052613 PubMed DOI PMC

Panteris E., Apostolakos P., Galatis B. (2006). Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cell Motil. Cytoskeleton 63 696–709. 10.1002/cm.20155 PubMed DOI

Pesquet E., Korolev A. V., Calder G., Lloyd C. W. (2010). The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20 744–749. 10.1016/j.cub.2010.02.057 PubMed DOI

Šamaj J., Ovecka M., Hlavacka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21 3296–3306. 10.1093/emboj/cdf349 PubMed DOI PMC

Šamaj J., Peters M., Volkmann D., Baluška F. (2000). Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant Cell Physiol. 41 571–582. 10.1093/pcp/41.5.571 PubMed DOI

Šamajová O., Komis G., Šamaj J. (2014). Immunofluorescent Localization of MAPKs and Colocalization with Microtubules in Arabidopsis Seedling Whole-Mount Probes, in Plant MAP Kinases Methods in Molecular Biology. New York, NY: Humana Press, 107–115. 10.1007/978-1-4939-0922-3_9 PubMed DOI

Saric-Krsmanovic M. M., Bozic D. M., Radivojevic L. M., Umiljendic J. S. G., Vrbnicanin S. P. (2017). Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet. J. Environ. Sci. Health B 52 812–816. 10.1080/03601234.2017.1356167 PubMed DOI

Sasaki T., Fukuda H., Oda Y. (2017). CORTICAL MICROTUBULE DISORDERING1 is required for secondary cell wall patterning in xylem vessels. Plant Cell 29 3123–3139. 10.1105/tpc.17.00663 PubMed DOI PMC

Schmidt S. M., Panstruga R. (2007). Cytoskeleton functions in plant–microbe interactions. Physiol. Mol. Plant Pathol. 71 135–148. 10.1016/j.pmpp.2008.01.001 DOI

Sherman T. D., Bowling A. J., Barger T. W., Vaughn K. C. (2008). The vestigial root of dodder (Cuscuta pentagona) seedlings. Int. J. Plant Sci. 169 998–1012. 10.1086/590442 DOI

Smertenko A., Assaad F., Baluška F., Bezanilla M., Buschmann H., Drakakaki G., et al. (2017). Plant cytokinesis: terminology for structures and processes. Trends Cell Biol. 27 885–894. 10.1016/j.tcb.2017.08.008 PubMed DOI

Spector I., Braet F., Shochet N. R., Bubb M. R. (1999). New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc. Res. Tech. 47 18–37. 10.1002/(SICI)1097-0029(19991001)47:1<18::AID-JEMT3>3.0.CO;2-E PubMed DOI

Srivastava S., Nighojkar A., Kumar A. (1994). Multiple forms of pectin methylesterase from Cuscuta reflexa filaments. Phytochemistry 37 1233–1236. 10.1016/S0031-9422(00)90390-X DOI

Svubova R., Lukacova Z., Kastier P., Blehova A. (2017). New aspects of dodder–tobacco interactions during haustorium development. Acta Physiol. Plant. 39:66. 10.1007/s11738-016-2340-2 PubMed DOI

Takemoto D., Hardham A. R. (2004). The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol. 136 3864–3876. 10.1104/pp.104.052159 PubMed DOI PMC

Těšitel J. (2016). Functional biology of parasitic plants: a review. Plant Ecol. Evol. 149 5–20. 10.5091/plecevo.2016.1097 DOI

Tian J., Han L., Feng Z., Wang G., Liu W., Ma Y., et al. (2015). Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 4:e09351. 10.7554/eLife.09351 PubMed DOI PMC

Toma C., Andronache A., Toma I. (2005). Histo-anatomical investigations on some Cuscuta species. Rom. J. Biol. 49 41–46.

van der Kooij T. A., Krause K., Dörr I., Krupinska K. (2000). Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210 701–707. 10.1007/s004250050670 PubMed DOI

Vaughn K. C. (2002). Attachment of the parasitic weed dodder to the host. Protoplasma 219 227–237. 10.1007/s007090200024 PubMed DOI

Vaughn K. C. (2003). Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma 220 189–200. 10.1007/s00709-002-0038-3 PubMed DOI

Vaughn K. C. (2006). Conversion of the searching hyphae of dodder into xylic and phloic hyphae: a cytochemical and immunocytochemical investigation. Int. J. Plant Sci. 167 1099–1114. 10.1086/507872 DOI

Vitha S., Baluška F., Jasik J., Volkmann D., Barlow P. W. (2000). Steedman’s wax for F-actin visualization, in Actin: A Dynamic Framework for Multiple Plant Cell Functions Developments in Plant and Soil Sciences. Dordrecht: Springer, 619–636. 10.1007/978-94-015-9460-8_35 DOI

Wani M. C., Horwitz S. B. (2014). Nature as a remarkable chemist: a personal story of the discovery and development of Taxol. Anticancer Drugs 25 482–487. 10.1097/CAD.0000000000000063 PubMed DOI PMC

Wasteneys G. O., Ambrose J. C. (2009). Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19 62–71. 10.1016/j.tcb.2008.11.004 PubMed DOI

Weed Seeds Order (2016). The Ministry of Agriculture and Agri-Food, Canada, Ottawa, May 6. Available at: http://laws-lois.justice.gc.ca/eng/regulations/SOR-2016-93/FullText.html [accessed February 14, 2018].

Yoder J. I., Scholes J. D. (2010). Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13 478–484. 10.1016/j.pbi.2010.04.011 PubMed DOI

Yoshida S., Cui S., Ichihashi Y., Shirasu K. (2016). The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67 643–667. 10.1146/annurev-arplant-043015-111702 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...