Timing correlations between cerebellar interpositus neuronal firing and classically conditioned eyelid responses in wild-type and Lurcher mice

. 2018 Jul 16 ; 8 (1) : 10697. [epub] 20180716

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30013234

Grantová podpora
LO1503 Ministerstvo Kultury (Ministry of Culture, Czech Republic) - International

Odkazy

PubMed 30013234
PubMed Central PMC6048028
DOI 10.1038/s41598-018-29000-w
PII: 10.1038/s41598-018-29000-w
Knihovny.cz E-zdroje

Classical eyeblink conditioning is an experimental model widely used for the study of the neuronal mechanisms underlying the acquisition of new motor and cognitive skills. There are two principal interpretations of the role of the cerebellum in the learning of eyelid conditioned responses (CRs). One considers that the cerebellum is the place where this learning is acquired and stored, while the second suggests that the cerebellum is mostly involved in the proper performance of acquired CRs, implying that there must be other brain areas involved in the learning process. We checked the timing of cerebellar interpositus nucleus (IPN) neurons' firing rate with eyelid CRs in both wild-type (WT) and Lurcher (a model of cerebellar cortex degeneration) mice. We used delay and trace conditioning paradigms. WT mice presented a better execution for delay vs. trace conditioning and also for these two paradigms than did Lurcher mice. IPN neurons were activated during CRs following the activation of the orbicularis oculi muscle. Firing patterns of IPN neurons were altered in Lurcher mice. In conclusion, the cerebellum seems to be mostly related with the performance of conditioned responses, rather than with their acquisition.

Zobrazit více v PubMed

Marr D. A theory of cerebellar cortex. J. Physiol. 1969;202:437–470. doi: 10.1113/jphysiol.1969.sp008820. PubMed DOI PMC

Albus J. A theory of cerebellar function. Math. Biosci. 1971;10:25–61. doi: 10.1016/0025-5564(71)90051-4. DOI

McCormick DA, et al. The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. B. Psychonomic. Soc. 1981;18(3):103–105. doi: 10.3758/BF03333573. DOI

McCormick DA, Clark GA, Lavond DG, Thompson RF. Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA. 1982;79(8):2731–2735. doi: 10.1073/pnas.79.8.2731. PubMed DOI PMC

Lincoln JS, McCormick DA, Thompson RF. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res. 1982;242(1):190–193. doi: 10.1016/0006-8993(82)90510-8. PubMed DOI

Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J. Physiol. (Lond.) 1991;444:459–480. doi: 10.1113/jphysiol.1991.sp018888. PubMed DOI PMC

Seidler RD, et al. Cerebellum activation associated with performance change but not motor learning. Science. 2002;296(5575):2043–2046. doi: 10.1126/science.1068524. PubMed DOI

Jiménez-Díaz L, Navarro-López J, de D, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J. Neurosci. 2004;24(41):9138–9145. doi: 10.1523/JNEUROSCI.2025-04.2004. PubMed DOI PMC

Bracha V, et al. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162(3):787–796. doi: 10.1016/j.neuroscience.2008.12.042. PubMed DOI PMC

Ammann C, Márquez-Ruiz J, Gómez-Climent MA, Delgado-García JM, Gruart A. The Motor Cortex Is Involved in the Generation of Classically Conditioned Eyelid responses in Behaving Rabbits. J. Neurosci. 2016;36(26):6988–7001. doi: 10.1523/JNEUROSCI.4190-15.2016. PubMed DOI PMC

Leal-Campanario R, Fairén A, Delgado-García JM, Gruart A. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition. Proc. Natl. Acad. Sci. USA. 2007;104(27):11459–11464. doi: 10.1073/pnas.0704548104. PubMed DOI PMC

Leal-Campanario R, Delgado-García JM, Gruart A. The rostral medial prefrontal cortex regulates the expression of conditioned eyelid responses in behaving rabbits. J. Neurosci. 2013;33(10):4378–4386. doi: 10.1523/JNEUROSCI.5560-12.2013. PubMed DOI PMC

Oswald B, Knuckley B, Mahan K, Sanders C, Powell DA. Prefrontal control of trace versus delay eyeblink conditioning: role of the unconditioned stimulus in rabbits (Oryctolagus cuniculus) Behav. Neurosci. 2006;120(5):1033–1042. doi: 10.1037/0735-7044.120.5.1033. PubMed DOI

Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29(6):330–338. doi: 10.1016/j.tins.2006.05.003. PubMed DOI

Boele HJ, Koekkoek SK, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front. Cell Neurosci. 2010;3(19):1–13. PubMed PMC

Chen L, Bao S, Lockard JM, Kim JK, Thompson RF. Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J. Neurosci. 1996;16(8):2829–2838. doi: 10.1523/JNEUROSCI.16-08-02829.1996. PubMed DOI PMC

Kishimoto Y, et al. Classical eyeblink conditioning in glutamate receptor subunit delta 2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur. J. Neurosci. 2001;13(6):1249–1253. doi: 10.1046/j.0953-816x.2001.01488.x. PubMed DOI

Kishimoto Y, et al. mGluR1 in cerebellar Purkinje cells is required for normal association of temporally contiguous stimuli in classical conditioning. Eur. J. Neurosci. 2002;16(12):2416–2424. doi: 10.1046/j.1460-9568.2002.02407.x. PubMed DOI

Koekkoek SK, et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science. 2003;301(5640):1736–1739. doi: 10.1126/science.1088383. PubMed DOI

Koekkoek, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron. 2005;47(3):339–352. doi: 10.1016/j.neuron.2005.07.005. PubMed DOI

Porras-García E, Cendelin J, Domínguez-del-Toro E, Vozeh F, Delgado-García JM. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur. J. Neurosci. 2005;21(4):979–988. doi: 10.1111/j.1460-9568.2005.03940.x. PubMed DOI

Brown KL, Agelan A, Woodruff-Pak DS. Unimpaired trace classical eyeblink conditioning in Purkinje cell degeneration (pcd) mutant mice. Neurobiol. Learn. Mem. 2010;93(3):303–311. doi: 10.1016/j.nlm.2009.11.004. PubMed DOI PMC

Hilber P, Lorivel T, Delarue C, Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003(1–2):108–112. doi: 10.1016/j.brainres.2004.01.008. PubMed DOI

Zuo J, et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388(6644):769–773. doi: 10.1038/42009. PubMed DOI

Kashiwabuchi N, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell. 1995;81(2):245–252. doi: 10.1016/0092-8674(95)90334-8. PubMed DOI

Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1979;287(1020):167–201. doi: 10.1098/rstb.1979.0055. PubMed DOI

Wetts R, Herrup K. Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of Lurcher chimeric mice. J. Neurosci. 1982;2(10):1494–1498. doi: 10.1523/JNEUROSCI.02-10-01494.1982. PubMed DOI PMC

Heckroth JA, Eisenman LM. Olivary morphology and olivocerebellar pathology in adult Lurcher mutant mice. J. Comp. Neurol. 1991;312(4):641–651. doi: 10.1002/cne.903120413. PubMed DOI

Norman DJ, et al. The Lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development. 1995;121(4):1183–1193. PubMed

Wullner U, Loschmann PA, Weller M, Klockgether T. Apoptotic cell death in the cerebellum of mutant weaver and Lurcher mice. Neurosci. Lett. 1995;200(2):109–112. doi: 10.1016/0304-3940(95)12090-Q. PubMed DOI

Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N. Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J. Neurosci. 2000;20(10):3687–3694. doi: 10.1523/JNEUROSCI.20-10-03687.2000. PubMed DOI PMC

Heckroth JA. Quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J. Comp. Neurol. 1994;343(1):173–182. doi: 10.1002/cne.903430113. PubMed DOI

Heckroth JA. A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J. Comp. Neurol. 1994;343(1):182–192. PubMed

Sultan F, König T, Möck M, Their P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J. Comp. Neurol. 2002;452:311–323. doi: 10.1002/cne.10365. PubMed DOI

Porras-García E, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J. Neurophysiol. 2010;104(1):346–65. doi: 10.1152/jn.00180.2010. PubMed DOI

Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. Compact 2nd Edition. Amsterdam, The Netherlands: Elsevier Academic Press (2004).

Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J. Neurophysiol. 2000;84(5):2680–2690. doi: 10.1152/jn.2000.84.5.2680. PubMed DOI

Gruart A, Delgado-García JM. Discharge of identified deep cerebellar nuclei neurons related to eye blinks in the alert cat. Neuroscience. 1994;61(3):665–681. doi: 10.1016/0306-4522(94)90443-X. PubMed DOI

Gruart A, Blázquez P, Delgado-García JM. Kinematics of spontaneous reflex, and conditioned eyelid movements in the alert cat. J. Neurophysiol. 1995;74(1):226–248. doi: 10.1152/jn.1995.74.1.226. PubMed DOI

López-Ramos JC, et al. Classical eyeblink conditioning during acute hypobaric hypoxia is improved in acclimatized mice and involves Fos expression in selected brain areas. J. Appl. Physiol. 2007;103(5):1479–1487. doi: 10.1152/japplphysiol.00384.2007. PubMed DOI

Freeman JE, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn. Mem. 2011;18(10):666–677. doi: 10.1101/lm.2023011. PubMed DOI PMC

Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 1997;20(4):177–181. doi: 10.1016/S0166-2236(96)10081-3. PubMed DOI

Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J. Neurosci. 2007;27(25):6620–6632. doi: 10.1523/JNEUROSCI.0488-07.2007. PubMed DOI PMC

Sánchez-Campusano R, Gruart A, Fernández-Mas R, Delgado-García JM. An agonist-antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front. Neuroanat. 2012;6(8):1–18. PubMed PMC

Hamiel SR, Bleicher JN, Tubach MR, Cronan JC. Evaluation of the Hall-effect sensor for determination of eyelid closure in vivo. Otolaryngol. Head Neck Surg. 1995;113(1):88–91. doi: 10.1016/S0194-5998(95)70149-4. PubMed DOI

Joachimsthaler B, Brugger D, Skodras A, Schwarz C. Spine loss in primary somatosensory cortex during trace eyeblink conditioning. J. Neurosci. 2015;35(9):3772–3781. doi: 10.1523/JNEUROSCI.2043-14.2015. PubMed DOI PMC

Siegel JJ, et al. Trace eyeblink conditioning in mice is dependent upon the dorsal medial prefrontal cortex, cerebellum, and amygdala: behavioral characterization and functional circuitry. eNeuro. 2015;2(4):1–29. doi: 10.1523/ENEURO.0051-14.2015. PubMed DOI PMC

Lorivel T, Roy V, Hilber P. Fear-related behaviors in Lurcher mutant mice exposed to a predator. Genes Brain Behav. 2014;13(8):794–801. doi: 10.1111/gbb.12173. PubMed DOI

Brelsford, J. Jr. & Theios, J. Single session conditioning of the nictitating membrane in the rabbit: Effect of intertrial interval. Psychon. Sci. 2, 81–82

Romano AG, Harvey JA. Enhanced learning following a single, acute dose of MDA. Pharmacol. Biochem. Behav. 1993;44(4):965–969. doi: 10.1016/0091-3057(93)90032-O. PubMed DOI

Asli O, Flaten MA. Conditioned facilitation of the unconditioned reflex after classical eyeblink conditioning. Int. J. Psychophysiol. 2008;67(1):17–22. doi: 10.1016/j.ijpsycho.2007.09.003. PubMed DOI

Woodruff-Pak DS. Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning. Neuroscience. 2006;141(1):233–243. doi: 10.1016/j.neuroscience.2006.03.070. PubMed DOI

Jirenhed DA, Hesslow G. Are Purkinje Cell Pauses Drivers of Classically Conditioned Blink Responses? Cerebellum. 2016;15(4):526–534. doi: 10.1007/s12311-015-0722-4. PubMed DOI PMC

Delgado-García JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002;1(4):289–308. doi: 10.1080/147342202320883597. PubMed DOI

Delgado-García JM, Vidal PP, Gómez C, Berthoz A. Vertical eye movements related signals in antidromically identified medullary reticular formation neurons in the alert cat. Exp. Brain Res. 1988;70(3):585–589. doi: 10.1007/BF00247606. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lurcher Mouse as a Model of Cerebellar Syndromes

. 2025 Feb 28 ; 24 (2) : 54. [epub] 20250228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...