Timing correlations between cerebellar interpositus neuronal firing and classically conditioned eyelid responses in wild-type and Lurcher mice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LO1503
Ministerstvo Kultury (Ministry of Culture, Czech Republic) - International
PubMed
30013234
PubMed Central
PMC6048028
DOI
10.1038/s41598-018-29000-w
PII: 10.1038/s41598-018-29000-w
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- časové faktory MeSH
- implantované elektrody MeSH
- klasické podmiňování fyziologie MeSH
- modely u zvířat MeSH
- mozečková jádra cytologie fyziologie MeSH
- mrkání fyziologie MeSH
- myši - mutanty neurologické MeSH
- myši MeSH
- neurony fyziologie MeSH
- podmiňování (oční víčka) fyziologie MeSH
- stereotaktické techniky přístrojové vybavení MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Classical eyeblink conditioning is an experimental model widely used for the study of the neuronal mechanisms underlying the acquisition of new motor and cognitive skills. There are two principal interpretations of the role of the cerebellum in the learning of eyelid conditioned responses (CRs). One considers that the cerebellum is the place where this learning is acquired and stored, while the second suggests that the cerebellum is mostly involved in the proper performance of acquired CRs, implying that there must be other brain areas involved in the learning process. We checked the timing of cerebellar interpositus nucleus (IPN) neurons' firing rate with eyelid CRs in both wild-type (WT) and Lurcher (a model of cerebellar cortex degeneration) mice. We used delay and trace conditioning paradigms. WT mice presented a better execution for delay vs. trace conditioning and also for these two paradigms than did Lurcher mice. IPN neurons were activated during CRs following the activation of the orbicularis oculi muscle. Firing patterns of IPN neurons were altered in Lurcher mice. In conclusion, the cerebellum seems to be mostly related with the performance of conditioned responses, rather than with their acquisition.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Biology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Pathophysiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Division of Neurosciences Pablo de Olavide University Seville Spain
Zobrazit více v PubMed
Marr D. A theory of cerebellar cortex. J. Physiol. 1969;202:437–470. doi: 10.1113/jphysiol.1969.sp008820. PubMed DOI PMC
Albus J. A theory of cerebellar function. Math. Biosci. 1971;10:25–61. doi: 10.1016/0025-5564(71)90051-4. DOI
McCormick DA, et al. The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. B. Psychonomic. Soc. 1981;18(3):103–105. doi: 10.3758/BF03333573. DOI
McCormick DA, Clark GA, Lavond DG, Thompson RF. Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA. 1982;79(8):2731–2735. doi: 10.1073/pnas.79.8.2731. PubMed DOI PMC
Lincoln JS, McCormick DA, Thompson RF. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res. 1982;242(1):190–193. doi: 10.1016/0006-8993(82)90510-8. PubMed DOI
Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J. Physiol. (Lond.) 1991;444:459–480. doi: 10.1113/jphysiol.1991.sp018888. PubMed DOI PMC
Seidler RD, et al. Cerebellum activation associated with performance change but not motor learning. Science. 2002;296(5575):2043–2046. doi: 10.1126/science.1068524. PubMed DOI
Jiménez-Díaz L, Navarro-López J, de D, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J. Neurosci. 2004;24(41):9138–9145. doi: 10.1523/JNEUROSCI.2025-04.2004. PubMed DOI PMC
Bracha V, et al. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162(3):787–796. doi: 10.1016/j.neuroscience.2008.12.042. PubMed DOI PMC
Ammann C, Márquez-Ruiz J, Gómez-Climent MA, Delgado-García JM, Gruart A. The Motor Cortex Is Involved in the Generation of Classically Conditioned Eyelid responses in Behaving Rabbits. J. Neurosci. 2016;36(26):6988–7001. doi: 10.1523/JNEUROSCI.4190-15.2016. PubMed DOI PMC
Leal-Campanario R, Fairén A, Delgado-García JM, Gruart A. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition. Proc. Natl. Acad. Sci. USA. 2007;104(27):11459–11464. doi: 10.1073/pnas.0704548104. PubMed DOI PMC
Leal-Campanario R, Delgado-García JM, Gruart A. The rostral medial prefrontal cortex regulates the expression of conditioned eyelid responses in behaving rabbits. J. Neurosci. 2013;33(10):4378–4386. doi: 10.1523/JNEUROSCI.5560-12.2013. PubMed DOI PMC
Oswald B, Knuckley B, Mahan K, Sanders C, Powell DA. Prefrontal control of trace versus delay eyeblink conditioning: role of the unconditioned stimulus in rabbits (Oryctolagus cuniculus) Behav. Neurosci. 2006;120(5):1033–1042. doi: 10.1037/0735-7044.120.5.1033. PubMed DOI
Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29(6):330–338. doi: 10.1016/j.tins.2006.05.003. PubMed DOI
Boele HJ, Koekkoek SK, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front. Cell Neurosci. 2010;3(19):1–13. PubMed PMC
Chen L, Bao S, Lockard JM, Kim JK, Thompson RF. Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J. Neurosci. 1996;16(8):2829–2838. doi: 10.1523/JNEUROSCI.16-08-02829.1996. PubMed DOI PMC
Kishimoto Y, et al. Classical eyeblink conditioning in glutamate receptor subunit delta 2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur. J. Neurosci. 2001;13(6):1249–1253. doi: 10.1046/j.0953-816x.2001.01488.x. PubMed DOI
Kishimoto Y, et al. mGluR1 in cerebellar Purkinje cells is required for normal association of temporally contiguous stimuli in classical conditioning. Eur. J. Neurosci. 2002;16(12):2416–2424. doi: 10.1046/j.1460-9568.2002.02407.x. PubMed DOI
Koekkoek SK, et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science. 2003;301(5640):1736–1739. doi: 10.1126/science.1088383. PubMed DOI
Koekkoek, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron. 2005;47(3):339–352. doi: 10.1016/j.neuron.2005.07.005. PubMed DOI
Porras-García E, Cendelin J, Domínguez-del-Toro E, Vozeh F, Delgado-García JM. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur. J. Neurosci. 2005;21(4):979–988. doi: 10.1111/j.1460-9568.2005.03940.x. PubMed DOI
Brown KL, Agelan A, Woodruff-Pak DS. Unimpaired trace classical eyeblink conditioning in Purkinje cell degeneration (pcd) mutant mice. Neurobiol. Learn. Mem. 2010;93(3):303–311. doi: 10.1016/j.nlm.2009.11.004. PubMed DOI PMC
Hilber P, Lorivel T, Delarue C, Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003(1–2):108–112. doi: 10.1016/j.brainres.2004.01.008. PubMed DOI
Zuo J, et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388(6644):769–773. doi: 10.1038/42009. PubMed DOI
Kashiwabuchi N, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell. 1995;81(2):245–252. doi: 10.1016/0092-8674(95)90334-8. PubMed DOI
Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1979;287(1020):167–201. doi: 10.1098/rstb.1979.0055. PubMed DOI
Wetts R, Herrup K. Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of Lurcher chimeric mice. J. Neurosci. 1982;2(10):1494–1498. doi: 10.1523/JNEUROSCI.02-10-01494.1982. PubMed DOI PMC
Heckroth JA, Eisenman LM. Olivary morphology and olivocerebellar pathology in adult Lurcher mutant mice. J. Comp. Neurol. 1991;312(4):641–651. doi: 10.1002/cne.903120413. PubMed DOI
Norman DJ, et al. The Lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development. 1995;121(4):1183–1193. PubMed
Wullner U, Loschmann PA, Weller M, Klockgether T. Apoptotic cell death in the cerebellum of mutant weaver and Lurcher mice. Neurosci. Lett. 1995;200(2):109–112. doi: 10.1016/0304-3940(95)12090-Q. PubMed DOI
Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N. Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J. Neurosci. 2000;20(10):3687–3694. doi: 10.1523/JNEUROSCI.20-10-03687.2000. PubMed DOI PMC
Heckroth JA. Quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J. Comp. Neurol. 1994;343(1):173–182. doi: 10.1002/cne.903430113. PubMed DOI
Heckroth JA. A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J. Comp. Neurol. 1994;343(1):182–192. PubMed
Sultan F, König T, Möck M, Their P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J. Comp. Neurol. 2002;452:311–323. doi: 10.1002/cne.10365. PubMed DOI
Porras-García E, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J. Neurophysiol. 2010;104(1):346–65. doi: 10.1152/jn.00180.2010. PubMed DOI
Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. Compact 2nd Edition. Amsterdam, The Netherlands: Elsevier Academic Press (2004).
Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J. Neurophysiol. 2000;84(5):2680–2690. doi: 10.1152/jn.2000.84.5.2680. PubMed DOI
Gruart A, Delgado-García JM. Discharge of identified deep cerebellar nuclei neurons related to eye blinks in the alert cat. Neuroscience. 1994;61(3):665–681. doi: 10.1016/0306-4522(94)90443-X. PubMed DOI
Gruart A, Blázquez P, Delgado-García JM. Kinematics of spontaneous reflex, and conditioned eyelid movements in the alert cat. J. Neurophysiol. 1995;74(1):226–248. doi: 10.1152/jn.1995.74.1.226. PubMed DOI
López-Ramos JC, et al. Classical eyeblink conditioning during acute hypobaric hypoxia is improved in acclimatized mice and involves Fos expression in selected brain areas. J. Appl. Physiol. 2007;103(5):1479–1487. doi: 10.1152/japplphysiol.00384.2007. PubMed DOI
Freeman JE, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn. Mem. 2011;18(10):666–677. doi: 10.1101/lm.2023011. PubMed DOI PMC
Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 1997;20(4):177–181. doi: 10.1016/S0166-2236(96)10081-3. PubMed DOI
Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J. Neurosci. 2007;27(25):6620–6632. doi: 10.1523/JNEUROSCI.0488-07.2007. PubMed DOI PMC
Sánchez-Campusano R, Gruart A, Fernández-Mas R, Delgado-García JM. An agonist-antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front. Neuroanat. 2012;6(8):1–18. PubMed PMC
Hamiel SR, Bleicher JN, Tubach MR, Cronan JC. Evaluation of the Hall-effect sensor for determination of eyelid closure in vivo. Otolaryngol. Head Neck Surg. 1995;113(1):88–91. doi: 10.1016/S0194-5998(95)70149-4. PubMed DOI
Joachimsthaler B, Brugger D, Skodras A, Schwarz C. Spine loss in primary somatosensory cortex during trace eyeblink conditioning. J. Neurosci. 2015;35(9):3772–3781. doi: 10.1523/JNEUROSCI.2043-14.2015. PubMed DOI PMC
Siegel JJ, et al. Trace eyeblink conditioning in mice is dependent upon the dorsal medial prefrontal cortex, cerebellum, and amygdala: behavioral characterization and functional circuitry. eNeuro. 2015;2(4):1–29. doi: 10.1523/ENEURO.0051-14.2015. PubMed DOI PMC
Lorivel T, Roy V, Hilber P. Fear-related behaviors in Lurcher mutant mice exposed to a predator. Genes Brain Behav. 2014;13(8):794–801. doi: 10.1111/gbb.12173. PubMed DOI
Brelsford, J. Jr. & Theios, J. Single session conditioning of the nictitating membrane in the rabbit: Effect of intertrial interval. Psychon. Sci. 2, 81–82
Romano AG, Harvey JA. Enhanced learning following a single, acute dose of MDA. Pharmacol. Biochem. Behav. 1993;44(4):965–969. doi: 10.1016/0091-3057(93)90032-O. PubMed DOI
Asli O, Flaten MA. Conditioned facilitation of the unconditioned reflex after classical eyeblink conditioning. Int. J. Psychophysiol. 2008;67(1):17–22. doi: 10.1016/j.ijpsycho.2007.09.003. PubMed DOI
Woodruff-Pak DS. Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning. Neuroscience. 2006;141(1):233–243. doi: 10.1016/j.neuroscience.2006.03.070. PubMed DOI
Jirenhed DA, Hesslow G. Are Purkinje Cell Pauses Drivers of Classically Conditioned Blink Responses? Cerebellum. 2016;15(4):526–534. doi: 10.1007/s12311-015-0722-4. PubMed DOI PMC
Delgado-García JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002;1(4):289–308. doi: 10.1080/147342202320883597. PubMed DOI
Delgado-García JM, Vidal PP, Gómez C, Berthoz A. Vertical eye movements related signals in antidromically identified medullary reticular formation neurons in the alert cat. Exp. Brain Res. 1988;70(3):585–589. doi: 10.1007/BF00247606. PubMed DOI
Lurcher Mouse as a Model of Cerebellar Syndromes