Calcium Signaling in Liver Injury and Regeneration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30023358
PubMed Central
PMC6039545
DOI
10.3389/fmed.2018.00192
Knihovny.cz E-zdroje
- Klíčová slova
- chronic liver disease, hepatic cholestasis, ischemic-reperfusion injury, metabolic disease, non-alcoholic fatty liver disease,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
Faculty of Science Institute of Experimental Biology Masaryk University Brno Czechia
Zobrazit více v PubMed
Matthes G, Stengel D, Seifert J, Rademacher G, Mutze S, Ekkernkamp A. Blunt liver injuries in polytrauma: results from a cohort study with the regular use of whole-body helical computed tomography. World J Surg. (2003) 27:1124–30. 10.1007/s00268-003-6981-0 PubMed DOI
Power C, Rasko JE. Whither prometheus' liver? Greek myth and the science of regeneration. Annals Int Med. (2008) 149:421–6. 10.7326/0003-4819-149-6-200809160-00009 PubMed DOI
Michalopoulos GK. Principles of liver regeneration and growth homeostasis. Compr Physiol. (2013) 3:485–513. 10.1002/cphy.c120014 PubMed DOI
Grisham JW. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. (1962) 22:842–9. PubMed
Bucher NL, Swaffield MN. The rate of incorporation of labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Res. (1964) 24:1611–25. PubMed
Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. (2012) 22:1166–75. 10.1016/j.cub.2012.05.016 PubMed DOI
Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature (2015) 524:180–5. 10.1038/nature14863 PubMed DOI PMC
Mangnall D, Bird NC, Majeed AW. The molecular physiology of liver regeneration following partial hepatectomy. Liver Int. (2003) 23:124–38. 10.1034/j.1600-0676.2003.00812.x PubMed DOI
Apte U. Liver Regeneration. Basic Mechanisms, Relevant Models and Clinical Applications. London: Academic Press; (2015).
Taira Z, Ueda Y, Monmasu H, Yamase D, Miyake S, Shiraishi M. Characteristics of intracellular Ca2+ signals consisting of two successive peaks in hepatocytes during liver regeneration after 70% partial hepatectomy in rats. J Exp Pharmacol. (2016) 8:21–33. 10.2147/JEP.S106084 PubMed DOI PMC
Mitchell C, Nivison M, Jackson LF, Fox R, Lee DC, Campbell JS, et al. . Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. J Biol Chem. (2005) 280:2562–8. 10.1074/jbc.M412372200 PubMed DOI
Tao Y, Wang M, Chen E, Tang H. Liver regeneration: analysis of the main relevant signaling molecules. Mediators Inflammation (2017) 2017:1–9. 10.1155/2017/4256352 PubMed DOI PMC
Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, et al. . Nucleoplasmic calcium is required for cell proliferation. J Biol Chem. (2007) 282:17061–8. 10.1074/jbc.M700490200 PubMed DOI PMC
Lagoudakis L, Garcin I, Julien B, Nahum K, Gomes DA, Combettes L, et al. . Cytosolic calcium regulates liver regeneration in the rat. Hepatology (2010) 52:602–11. 10.1002/hep.23673 PubMed DOI PMC
Natarajan A, Wagner B, Sibilia M. The EGF receptor is required for efficient liver regeneration. Proc Natl Acad Sci USA. (2007) 104:17081–6. 10.1073/pnas.0704126104 PubMed DOI PMC
Paranjpe S, Bowen WC, Bell AW, Nejak-Bowen K, Luo J-H, Michalopoulos GK. Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology (2007) 45:1471–7. 10.1002/hep.21570 PubMed DOI PMC
Paranjpe S, Bowen WC, Tseng GC, Luo J-H, Orr A, Michalopoulos GK. RNA interference against hepatic epidermal growth factor receptor has suppressive effects on liver regeneration in rats. Am J Pathol. (2010) 176:2669–81. 10.2353/ajpath.2010.090605 PubMed DOI PMC
Nejak-Bowen K, Orr A, Bowen WC, Michalopoulos GK. Conditional genetic elimination of hepatocyte growth factor in mice compromises liver regeneration after partial hepatectomy. PLoS ONE (2013) 8:e59836. 10.1371/journal.pone.0059836 PubMed DOI PMC
Paranjpe S, Bowen WC, Mars WM, Orr A, Haynes MM, DeFrances MC, et al. . Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology (2016) 64:1711–24. 10.1002/hep.28721 PubMed DOI PMC
Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta (2007) 1773:1161–76. 10.1016/j.bbamcr.2007.01.002 PubMed DOI PMC
Roskoski R. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. (2012) 66:105–43. 10.1016/j.phrs.2012.04.005 PubMed DOI
Mine T, Kojima I, Ogata E, Nakamura T. Comparison of effects of HGF and EGF on cellular calcium in rat hepatocytes. Biochem Biophys Res Commun. (1991) 181:1173–80. 10.1016/0006-291X(91)92062-O PubMed DOI
Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, et al. . c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem. (2008) 283:4344–51. 10.1074/jbc.M706550200 PubMed DOI PMC
Mellström B, Savignac M, Gomez-Villafuertes R, Naranjo JR. Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev. (2008) 88:421–49. 10.1152/physrev.00041.2005 PubMed DOI
Andrade V, Guerra M, Jardim C, Melo F, Silva W, Ortega JM, et al. . Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol. (2011) 55:626–35. 10.1016/j.jhep.2010.12.022 PubMed DOI PMC
De Angelis Campos AC, Rodrigues MA, de Andrade C, de Goes AM, Nathanson MH, Gomes DA. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway. Biochem Biophys Res Commun. (2011) 412:341–6. 10.1016/j.bbrc.2011.07.100 PubMed DOI PMC
Wang Y-N, Wang H, Yamaguchi H, Lee H-J, Lee H-H, Hung M-C. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun. (2010) 399:498–504. 10.1016/j.bbrc.2010.07.096 PubMed DOI PMC
Wang Y-N, Yamaguchi H, Huo L, Du Y, Lee H-J, Lee H-H, et al. . The translocon sec61β localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem. (2010) 285:38720–9. 10.1074/jbc.M110.158659 PubMed DOI PMC
Lo HW, Cao X, Zhu H, Ali-Osman F. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res. (2010) 8:232–45. 10.1158/1541-7786.MCR-09-0391 PubMed DOI PMC
Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J. A functional nuclear epidermal growth factor receptor, Src and Stat3 heteromeric complex in pancreatic cancer cells. PLoS ONE (2011) 6:e19605. 10.1371/journal.pone.0019605 PubMed DOI PMC
Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, et al. . Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. (2001) 3:802–8. 10.1038/ncb0901-802 PubMed DOI
Rodrigues MA, Gomes DA, Andrade VA, Leite MF, Nathanson MH. Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology (2008) 48:1621–31. 10.1002/hep.22424 PubMed DOI PMC
Amaya MJ, Oliveira AG, Guimarães ES, Casteluber MCF, Carvalho SM, Andrade LM, et al. . The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology (2014) 59:274–83. 10.1002/hep.26609 PubMed DOI PMC
Guerra MT, Fonseca EA, Melo FM, Andrade VA, Aguiar CJ, Andrade LM, et al. . Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology (2011) 54:296–306. 10.1002/hep.24367 PubMed DOI PMC
Antony AN, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. . MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. (2016) 7:10955. 10.1038/ncomms10955 PubMed DOI PMC
Raya A, Kawakami Y, Rodríguez-Esteban C, Ibañes M, Rasskin-Gutman D, Rodríguez-León J, et al. . Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature (2004) 427:121–8. 10.1038/nature02190 PubMed DOI
Dalrymple S, Antony L, Xu Y, Uzgare AR, Arnold JT, Savaugeot J, et al. . Role of notch-1 and E-cadherin in the differential response to calcium in culturing normal versus malignant prostate cells. Cancer Res. (2005) 65:9269–79. 10.1158/0008-5472.CAN-04-3989 PubMed DOI
Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, et al. . Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. (2000) 20:1825–35. 10.1128/MCB.20.5.1825-1835.2000 PubMed DOI PMC
Bray SJ. Notch signalling in context. Nat Rev Clin Oncol. (2016) 17:722–35. 10.1038/nrm.2016.94 PubMed DOI
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development (2011) 138:3593–612. 10.1242/dev.063610 PubMed DOI
Zhang F, Zhang J, Li X, Li B, Tao K, Yue S. Notch signaling pathway regulates cell cycle in proliferating hepatocytes involved in liver regeneration. J Gastroenterol Hepatol. (2018). 10.1111/jgh.14110 [Epub ahead of print]. PubMed DOI
Lauschke VM, Vorrink SU, Moro SML, Rezayee F, Nordling Å, Hendriks DFG, et al. . Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation. Hepatology (2016) 64:1743–56. 10.1002/hep.28780 PubMed DOI
Shulman M, Nahmias Y. Long-term culture and coculture of primary rat and human hepatocytes. Methods Mol Biol. (2013) 945:287–302. 10.1007/978-1-62703-125-7_17 PubMed DOI PMC
Cho CH, Berthiaume F, Tilles AW, Yarmush ML. A new technique for primary hepatocyte expansion in vitro. Biotechnol. Bioeng. (2008) 101:345–56. 10.1002/bit.21911 PubMed DOI PMC
Katsuda T, Kawamata M, Hagiwara K, Takahashi R-u, Yamamoto Y, Camargo FD, et al. . Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Stem Cell (2017) 20:41–55. 10.1016/j.stem.2016.10.007 PubMed DOI
Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol. (2016) 29:1936–55. 10.1021/acs.chemrestox.6b00150 PubMed DOI
Huang J, Rudnick DA. Elucidating the metabolic regulation of liver regeneration. Am J Pathol. (2014) 184:309–21. 10.1016/j.ajpath.2013.04.034 PubMed DOI PMC
Wang H, Peiris TH, Mowery A, Le Lay J, Gao Y, Greenbaum LE. CCAAT/enhancer binding protein-beta is a transcriptional regulator of peroxisome-proliferator-activated receptor-gamma coactivator-1alpha in the regenerating liver. Mol Endocrinol. (2008) 22:1596–605. 10.1210/me.2007-0388 PubMed DOI PMC
Weymann A, Hartman E, Gazit V, Wang C, Glauber M, Turmelle Y, et al. . p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology (2009) 50:207–15. 10.1002/hep.22979 PubMed DOI PMC
Cuenca AG, Cress WD, Good RA, Marikar Y, Engelman RW. Calorie restriction influences cell cycle protein expression and DNA synthesis during liver regeneration. Exp Biol Med. (2001) 226:1061–7. 10.1177/153537020122601114 PubMed DOI
Blackshear PJ, Stumpo DJ, Kennington EA, Tuttle JS, Orth DN, Thompson KL, et al. . Decreased levels of hepatic epidermal growth factor receptors in obese hyperglycemic rodents. J Biol Chem. (1987) 262:12356–64. PubMed
Obata T, Maegawa H, Kashiwagi A, Pillay TS, Kikkawa R. High glucose-induced abnormal epidermal growth factor signaling. J Biochem. (1998) 123:813–20. 10.1093/oxfordjournals.jbchem.a022009 PubMed DOI
Shteyer E, Liao Y, Muglia LJ, Hruz PW, Rudnick DA. Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice. Hepatology (2004) 40:1322–32. 10.1002/hep.20462 PubMed DOI
Newberry EP, Kennedy SM, Xie Y, Luo J, Stanley SE, Semenkovich CF, et al. . Altered hepatic triglyceride content after partial hepatectomy without impaired liver regeneration in multiple murine genetic models. Hepatology (2008) 48:1097–105. 10.1002/hep.22473 PubMed DOI PMC
Gazit V, Weymann A, Hartman E, Finck BN, Hruz PW, Tzekov A, et al. . Liver regeneration is impaired in lipodystrophic fatty liver dystrophy mice. Hepatology (2010) 52:2109–17. 10.1002/hep.23920 PubMed DOI PMC
Walldorf J, Hillebrand C, Aurich H, Stock P, Hempel M, Ebensing S, et al. . Propranolol impairs liver regeneration after partial hepatectomy in C57Bl/6-mice by transient attenuation of hepatic lipid accumulation and increased apoptosis. Scand J Gastroenterol. (2010) 45:468–76. 10.3109/00365520903583848 PubMed DOI
de Meijer VE, Kalish BT, Puder M, IJzermans JNM. Systematic review and meta-analysis of steatosis as a risk factor in major hepatic resection. Br J Surg. (2010) 97:1331–9. 10.1002/bjs.7194 PubMed DOI
Kim Y-I. Ischemia-reperfusion injury of the human liver during hepatic resection. J Hepato Biliary Pancreat Surg. (2003) 10:195–9. 10.1007/s00534-002-0730-x PubMed DOI
Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology (2000) 32:169–73. 10.1053/jhep.2000.9323 PubMed DOI
Evankovich J, Zhang R, Cardinal JS, Zhang L, Chen J, Huang H, et al. . Calcium/calmodulin-dependent protein kinase IV limits organ damage in hepatic ischemia-reperfusion injury through induction of autophagy. Am J Physiol Gastrointest Liver Physiol. (2012) 303:G189–98. 10.1152/ajpgi.00051.2012 PubMed DOI PMC
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol. (2015) 6:260–71. 10.1016/j.redox.2015.08.010 PubMed DOI PMC
Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. (2006) 34(Pt 2):232–7. 10.1042/BST0340232 PubMed DOI
Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, et al. . Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. (2009) 284:20796–803. 10.1074/jbc.M109.025353 PubMed DOI PMC
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. . Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature (2005) 434:652–8. 10.1038/nature03317 PubMed DOI
Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. . Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature (2005) 434:658–62. 10.1038/nature03434 PubMed DOI
Anderson CD, Pierce J, Nicoud I, Belous A, Knox CD, Chari RS. Modulation of mitochondrial calcium management attenuates hepatic warm ischemia-reperfusion injury. Liver Transplant. (2005) 11:663–8. 10.1002/lt.20407 PubMed DOI
Upadhya GA, Topp SA, Hotchkiss RS, Anagli J, Strasberg SM. Effect of cold preservation on intracellular calcium concentration and calpain activity in rat sinusoidal endothelial cells. Hepatology (2003) 37:313–23. 10.1053/jhep.2003.50069 PubMed DOI
Bartels M, Biesalski HK, Engelhart K, Sendlhofer G, Rehak P, Nagel E. Pilot study on the effect of parenteral vitamin E on ischemia and reperfusion induced liver injury: a double blind, randomized, placebo-controlled trial. Clin Nutr. (2004) 23:1360–70. 10.1016/j.clnu.2004.05.003 PubMed DOI
Jegatheeswaran S, Siriwardena AK. Experimental and clinical evidence for modification of hepatic ischaemia-reperfusion injury by N-acetylcysteine during major liver surgery. HPB (2011) 13:71–8. 10.1111/j.1477-2574.2010.00263.x PubMed DOI PMC
Ninomiya M, Shimada M, Harada N, Soejima Y, Suehiro T, Maehara Y. The hydroxyl radical scavenger MCI-186 protects the liver from experimental cold ischaemia–reperfusion injury. Br J Surg. (2004) 91:184–90. 10.1002/bjs.4401 PubMed DOI
Totsuka O, Takeyoshi I, Tsutsumi H, Arakawa K, Akao T, Muraoka M, et al. . Effects of a free radical scavenger, MCI-186, on ischemia-reperfusion injury during extended liver resection in dogs. Hepatogastroenterology (2005) 52:1545–8. PubMed
Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. . Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. (2008) 359:473–81. 10.1056/NEJMoa071142 PubMed DOI
Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J. Hepatol. (2013) 59:1094–106. 10.1016/j.jhep.2013.06.017 PubMed DOI
Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation–from bench to bedside. Nat Rev Gastroenterol Hepatol. (2013) 10:79–89. 10.1038/nrgastro.2012.225 PubMed DOI PMC
Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. JAMA (2002) 287:2215–20. 10.1001/jama.287.17.2215 PubMed DOI
Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol. (2016) 4:131–42. 10.14218/JCTH.2015.00052 PubMed DOI PMC
Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic biomarkers for improved drug therapy-recent progress and future developments. AAPS J. (2017) 20:4. 10.1208/s12248-017-0161-x PubMed DOI
Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today (2016) 21:648–53. 10.1016/j.drudis.2016.02.015 PubMed DOI
Björnsson E. Epidemiology and risk factors for idiosyncratic drug-induced liver injury. Semin Liver Dis. (2014) 34:115–22. 10.1055/s-0034-1375953 PubMed DOI
Navarro VJ, Khan I, Björnsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology (2017) 65:363–73. 10.1002/hep.28813 PubMed DOI PMC
Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci. (2002) 65:166–76. 10.1093/toxsci/65.2.166 PubMed DOI
Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. (2009) 16:3041–53. 10.2174/092986709788803097 PubMed DOI PMC
Lauschke VM, Ingelman-Sundberg M. The importance of patient-specific factors for hepatic drug response and toxicity. Int J Mol Sci. (2016) 17:1714. 10.3390/ijms17101714 PubMed DOI PMC
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect. (2016) 4:e00211. 10.1002/prp2.211 PubMed DOI PMC
Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an updated review. Arch Toxicol. (2014) 89:193–9. 10.1007/s00204-014-1432-2 PubMed DOI
Zhou L, McKenzie BA, Eccleston ED, Srivastava SP, Chen N, Erickson RR, et al. . The covalent binding of [14C]acetaminophen to mouse hepatic microsomal proteins: the specific binding to calreticulin and the two forms of the thiol:protein disulfide oxidoreductases. Chem Res Toxicol. (1996) 9:1176–82. 10.1021/tx960069d PubMed DOI
Shin N-Y, Liu Q, Stamer SL, Liebler DC. Protein targets of reactive electrophiles in human liver microsomes. Chem Res Toxicol. (2007) 20:859–67. 10.1021/tx700031r PubMed DOI PMC
Uzi D, Barda L, Scaiewicz V, Mills M, Mueller T, González-Rodríguez Á, et al. . CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol. (2013) 59:495–503. 10.1016/j.jhep.2013.04.024 PubMed DOI
Lim MS, Lim PLK, Gupta R, Boelsterli UA. Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes. Toxicol Appl Pharmacol. (2006) 217:322–31. 10.1016/j.taap.2006.09.012 PubMed DOI
Boelsterli U. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol. (2003) 192:307–22. 10.1016/S0041-008X(03)00368-5 PubMed DOI
Maiuri AR, Breier AB, Turkus JD, Ganey PE, Roth RA. Calcium contributes to the cytotoxic interaction between diclofenac and cytokines. Toxicol Sci. (2016) 149:372–84. 10.1093/toxsci/kfv249 PubMed DOI PMC
Kao E, Shinohara M, Feng M, Lau MY, Ji C. Human immunodeficiency virus protease inhibitors modulate Ca2+ homeostasis and potentiate alcoholic stress and injury in mice and primary mouse and human hepatocytes. Hepatology (2012) 56:594–604. 10.1002/hep.25702 PubMed DOI PMC
Apostolova N, Gomez-Sucerquia LJ, Alegre F, Funes HA, Victor VM, Barrachina MD, et al. . ER stress in human hepatic cells treated with Efavirenz: Mitochondria again. J Hepatol. (2013) 59:780–9. 10.1016/j.jhep.2013.06.005 PubMed DOI
Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, et al. . Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene (2008) 27:285–99. 10.1038/sj.onc.1210638 PubMed DOI
van Vliet AR, Verfaillie T, Agostinis P. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta (2014) 1843:2253–62. 10.1016/j.bbamcr.2014.03.009 PubMed DOI
Chami M, Oulès B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Bréchot P. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell (2008) 32:641–51. 10.1016/j.molcel.2008.11.014 PubMed DOI PMC
Pessayre D, Fromenty B, Berson A, Robin M-A, Lettéron P, Moreau R, et al. . Central role of mitochondria in drug-induced liver injury. Drug Metab Rev. (2012) 44:34–87. 10.3109/03602532.2011.604086 PubMed DOI
Trost LC, Lemasters JJ. The mitochondrial permeability transition: a new pathophysiological mechanism for Reye's syndrome and toxic liver injury. J Pharmacol Exp Ther. (1996) 278:1000–5. PubMed
Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem. (2004) 279:53103–8. 10.1074/jbc.M407500200 PubMed DOI
Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol. (2003) 5:1051–61. 10.1038/ncb1063 PubMed DOI
Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res. (2007) 331:283–300. 10.1007/s00441-007-0542-z PubMed DOI PMC
Michalopoulos GK. The liver is a peculiar organ when it comes to stem cells. Am J Pathol. (2014) 184:1263–7. 10.1016/j.ajpath.2014.02.020 PubMed DOI PMC
Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology (2014) 59:1617–26. 10.1002/hep.26753 PubMed DOI
Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. (1989) 49:1541–7. PubMed
Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, Bhathal PS, et al. . Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology (2007) 133:80–90. 10.1053/j.gastro.2007.05.012 PubMed DOI
Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, et al. . The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology (2014) 59:1393–405. 10.1002/hep.26937 PubMed DOI
Michelotti GA, Tucker A, Swiderska-Syn M, Machado MV, Choi SS, Kruger L, et al. . Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut (2016) 65:683–92. 10.1136/gutjnl-2014-308176 PubMed DOI PMC
Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell (2014) 14:561–74. 10.1016/j.stem.2014.04.010 PubMed DOI
Kawaguchi Y. Sox9 and programming of liver and pancreatic progenitors. J Clin Invest. (2013) 123:1881–6. 10.1172/JCI66022 PubMed DOI PMC
Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, et al. . The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. (2014) 1:149–61. 10.1016/j.gendis.2014.09.004 PubMed DOI PMC
Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. . Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Rev Clin Oncol. (2011) 43:34–41. 10.1038/ng.722 PubMed DOI
Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, et al. . Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell (2015) 162:766–79. 10.1016/j.cell.2015.07.026 PubMed DOI PMC
Argentaro A, Sim H, Kelly S, Preiss S, Clayton A, Jans DA, et al. . A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J Biol Chem. (2003) 278:33839–47. 10.1074/jbc.M302078200 PubMed DOI
Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, et al. . Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell (2014) 15:340–9. 10.1016/j.stem.2014.06.003 PubMed DOI PMC
Schaub JR, Malato Y, Gormond C, Willenbring H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. (2014) 8:933–9. 10.1016/j.celrep.2014.07.003 PubMed DOI PMC
Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. . Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Stem Cell (2014) 15:605–18. 10.1016/j.stem.2014.09.008 PubMed DOI PMC
Raven A, Lu W-Y, Man TY, Ferreira-Gonzalez S, O'Duibhir E, Dwyer BJ, et al. . Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature (2017) 547:350–4. 10.1038/nature23015 PubMed DOI PMC
Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Cast AE, Donnelly B, et al. . De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature (2018) 557:247–51. 10.1038/s41586-018-0075-5 PubMed DOI PMC
Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. (2014) 2014:943162. 10.1155/2014/943162 PubMed DOI PMC
Hu FB, van Dam RM, Liu S. Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia (2001) 44:805–17. 10.1007/s001250100547 PubMed DOI
Zivkovic AM, German JB, Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr. (2007) 86:285–300. 10.1093/ajcn/86.2.285 PubMed DOI
Bartlett PJ, Gaspers LD, Pierobon N, Thomas AP. Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium (2014) 55:306–16. 10.1016/j.ceca.2014.02.007 PubMed DOI
Arruda AP, Hotamisligil GS. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. (2015) 22:381–97. 10.1016/j.cmet.2015.06.010 PubMed DOI PMC
Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. . Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature (2011) 473:528–31. 10.1038/nature09968 PubMed DOI PMC
Wang Y, Li G, Goode J, Paz JC, Ouyang K, Screaton R, et al. . Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature (2012) 485:128–32. 10.1038/nature10988 PubMed DOI PMC
Park SW, Zhou Y, Lee J, Lee J, Ozcan U. Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci USA. (2010) 107:19320–5. 10.1073/pnas.1012044107 PubMed DOI PMC
Egnatchik RA, Leamy AK, Jacobson DA, Shiota M, Young JD. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab. (2014) 3:544–53. 10.1016/j.molmet.2014.05.004 PubMed DOI PMC
Bass J, Chiu G, Argon Y, Steiner DF. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol. (1998) 141:637–46. 10.1083/jcb.141.3.637 PubMed DOI PMC
Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, et al. . GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest. (2009) 119:1201–15. 10.1172/JCI37007 PubMed DOI PMC
Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka T-a, et al. . Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. (2005) 280:847–51. 10.1074/jbc.M411860200 PubMed DOI
Chen Y, Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. (2013) 23:547–55. 10.1016/j.tcb.2013.06.005 PubMed DOI PMC
Ozcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E, et al. . Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science (2004) 306:457–61. 10.1126/science.1103160 PubMed DOI
Du KY, Herzig S, Kulkarni RN, Montminy M. TRB3: A tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science (2003) 300:1574–7. 10.1126/science.1079817 PubMed DOI
Koh H-J, Toyoda T, Didesch MM, Lee M-Y, Sleeman MW, Kulkarni RN, et al. . Tribbles 3 mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Nat Commun. (2013) 4:1871. 10.1038/ncomms2851 PubMed DOI PMC
Shen Z-Q, Chen Y-F, Chen J-R, Jou Y-S, Wu P-C, Kao C-H, et al. . CISD2 Haploinsufficiency disrupts calcium homeostasis, causes nonalcoholic fatty liver disease, and promotes hepatocellular carcinoma. Cell Rep. (2017) 21:2198–211. 10.1016/j.celrep.2017.10.099 PubMed DOI
Swulius MT, Waxham MN. Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci. (2008) 65:2637–57. 10.1007/s00018-008-8086-2 PubMed DOI PMC
Shen QW, Zhu MJ, Tong J, Ren J, Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by α-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol. (2007) 293:C1395–403. 10.1152/ajpcell.00115.2007 PubMed DOI
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. (2018) 19:121–35. 10.1038/nrm.2017.95 PubMed DOI PMC
Nakae J, Oki M, Cao Y. The FoxO transcription factors and metabolic regulation. FEBS Lett. (2007) 582:54–67. 10.1016/j.febslet.2007.11.025 PubMed DOI
Ozcan L, Wong CCL, Li G, Xu T, Pajvani U, Park SKR, et al. . Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. (2012) 15:739–51. 10.1016/j.cmet.2012.03.002 PubMed DOI PMC
Ruan H-B, Ma Y, Torres S, Zhang B, Feriod C, Heck RM, et al. . Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. (2017) 31:1655–65. 10.1101/gad.305441.117 PubMed DOI PMC
Kang JK, Kim O-H, Hur J, Yu SH, Lamichhane S, Lee JW, et al. . Increased intracellular Ca2+concentrations prevent membrane localization of PH domains through the formation of Ca2+-phosphoinositides. Proc Natl Acad Sci USA. (2017) 114:11926–31. 10.1073/pnas.1706489114 PubMed DOI PMC
De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature (2011) 476:336–40. 10.1038/nature10230 PubMed DOI PMC
Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, et al. . Architecture of the mitochondrial calcium uniporter. Nature (2016) 533:269–73. 10.1038/nature17656 PubMed DOI PMC
Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, et al. . Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature (2011) 476:341–5. 10.1038/nature10234 PubMed DOI PMC
Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, et al. . NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl Acad. Sci USA. (2010) 107:436–41. 10.1073/pnas.0908099107 PubMed DOI PMC
Jiang D, Zhao L, Clapham DE. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science (2009) 326:144–7. 10.1126/science.1175145 PubMed DOI PMC
Denton RM, Randle PJ, Martin BR. Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J. (1972) 128:161–3. 10.1042/bj1280161 PubMed DOI PMC
Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J. (1978) 176:899–906. 10.1042/bj1760899 PubMed DOI PMC
McCormack JG, Denton RM. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J. (1979) 180:533–44. 10.1042/bj1800533 PubMed DOI PMC
Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, et al. . Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature (2007) 449:496–500. 10.1038/nature06161 PubMed DOI
Bernardi P, von Stockum S. The permeability transition pore as a Ca2+ release channel: new answers to an old question. Cell Calcium (2012) 52:22–7. 10.1016/j.ceca.2012.03.004 PubMed DOI PMC
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. (2009) 47:333–43. 10.1016/j.freeradbiomed.2009.05.004 PubMed DOI
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. (2000) 348 (Pt 3):607–14. 10.1042/bj3480607 PubMed DOI PMC
Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. . Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. (2010) 11:554–65. 10.1016/j.cmet.2010.04.001 PubMed DOI PMC
Woods A, Williams JR, Muckett PJ, Mayer FV, Liljevald M, Bohlooly-Y M, et al. . Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. (2017) 18:3043–51. 10.1016/j.celrep.2017.03.011 PubMed DOI PMC
Jung TW, Lee MW, Lee YJ, Kim SM. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem Biophys Res Commun. (2012) 417:147–52. 10.1016/j.bbrc.2011.11.073 PubMed DOI
Simon-Szabó L, Kokas M, Mandl J, Kéri G, Csala M. Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS ONE (2014) 9:e97868. 10.1371/journal.pone.0097868 PubMed DOI PMC
Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, et al. . Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol. (2014) 15:R49–17. 10.1186/gb-2014-15-3-r49 PubMed DOI PMC
Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, et al. . Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. (2010) 120:2355–69. 10.1172/JCI40671 PubMed DOI PMC
Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. (2016) 48:e224. 10.1038/emm.2016.16 PubMed DOI PMC
Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. . Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science (2006) 313:1137–40. 10.1126/science.1128294 PubMed DOI PMC
Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes (2011) 60:918–24. 10.2337/db10-1433 PubMed DOI PMC
Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, et al. . Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes (2010) 59:1899–905. 10.2337/db10-0308 PubMed DOI PMC
Fu S, Yalcin A, Lee GY, Li P, Fan J, Arruda AP, et al. . Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded protein response with antidiabetic activity. Sci Transl Med. (2015) 7(292):292ra98. 10.1126/scitranslmed.aaa9134 PubMed DOI PMC
Hirata K, Dufour J-F, Shibao K, Knickelbein R, O'Neill AF, Bode H-P, et al. . Regulation of Ca2+ signaling in rat bile duct epithelia by inositol 1,4,5-trisphosphate receptor isoforms. Hepatology (2002) 36:284–96. 10.1053/jhep.2002.34432 PubMed DOI PMC
Nathanson MH, Burgstahler AD, Mennone A, Boyer JL. Characterization of cytosolic Ca2+ signaling in rat bile duct epithelia. Am J Physiol. (1996) 271(1 Pt 1):G86–96. 10.1152/ajpgi.1996.271.1.G86 PubMed DOI
Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH. Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol. (2001) 281:G1059–67. 10.1152/ajpgi.2001.281.4.G1059 PubMed DOI
Woo K, Dutta AK, Patel V, Kresge C, Feranchak AP. Fluid flow induces mechanosensitive ATP release, calcium signalling and Cl− transport in biliary epithelial cells through a PKCzeta-dependent pathway. J Physiol. (2008) 586:2779–98. 10.1113/jphysiol.2008.153015 PubMed DOI PMC
Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology (2006) 131:911–20. 10.1053/j.gastro.2006.07.003 PubMed DOI PMC
Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, et al. . Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA. (2007) 104:19138–43. 10.1073/pnas.0705964104 PubMed DOI PMC
Dutta AK, Khimji A-k, Kresge C, Bugde A, Dougherty M, Esser V, et al. . Identification and functional characterization of TMEM16A, a Ca2+-activated Cl− channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem. (2011) 286:766–76. 10.1074/jbc.M110.164970 PubMed DOI PMC
Dutta AK, Woo K, Khimji A-k, Kresge C, Feranchak AP. Mechanosensitive Cl- secretion in biliary epithelium mediated through TMEM16A. Am J Physiol Gastrointest Liver Physiol. (2013) 304:G87–98. 10.1152/ajpgi.00154.2012 PubMed DOI PMC
Fiorotto R, Spirlì C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Gastroenterology (2007) 133:1603–13. 10.1053/j.gastro.2007.08.071 PubMed DOI
Lenzen R, Alpini G, Tavoloni N. Secretin stimulates bile ductular secretory activity through the cAMP system. Am J Physiol. (1992) 263(4 Pt 1):G527–32. 10.1152/ajpgi.1992.263.4.G527 PubMed DOI
Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, et al. . Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology (2007) 133:1592–602. 10.1053/j.gastro.2007.08.020 PubMed DOI PMC
Strazzabosco M, Fiorotto R, Melero S, Glaser S, Francis H, Spirlì C, et al. . Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology (2009) 50:244–52. 10.1002/hep.22926 PubMed DOI PMC
Becq F. CFTR channels and adenosine triphosphate release: the impossible rendez-vous revisited in skeletal muscle. J Physiol. (2010) 588(Pt 23):4605–6. 10.1113/jphysiol.2010.200113 PubMed DOI PMC
Dutta AK, Khimji A-k, Sathe M, Kresge C, Parameswara V, Esser V, et al. . Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium. Am J Physiol Gastrointest Liver Physiol. (2009) 297:G1009–18. 10.1152/ajpgi.00223.2009 PubMed DOI PMC
Feranchak AP, Doctor RB, Troetsch M, Brookman K, Johnson SM, Fitz JG. Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. Gastroenterology (2004) 127:903–13. 10.1053/j.gastro.2004.06.047 PubMed DOI
Li Q, Dutta A, Kresge C, Bugde A, Feranchak AP. Bile acids stimulate cholangiocyte fluid secretion by activation of membrane TMEM16A Cl- channels. Hepatology (2018). 10.1002/hep.29804. [Epub ahead of print]. PubMed DOI PMC
Dutta AK, Khimji A-k, Liu S, Karamysheva Z, Fujita A, Kresge C, et al. . PKCα regulates TMEM16A-mediated Cl? secretion in human biliary cells. American Journal of Physiology - Gastrointestinal and Liver Physiology. (2016) 310:G34-42. PubMed PMC
Kitamura T, Brauneis U, Gatmaitan Z, Arias IM. Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology (1991) 14(4 Pt 1):640–7. 10.1002/hep.1840140411 PubMed DOI
Nathanson MH, Burgstahler AD, Mennone A, Fallon MB, Gonzalez CB, Saez JC. Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol. (1995) 269(1 Pt 1):G167–71. 10.1152/ajpgi.1995.269.1.G167 PubMed DOI
Karjalainen A, Bygrave FL. The synergistic action (cross-talk) of glucagon and vasopressin induces early bile flow and plasma-membrane calcium fluxes in the perfused rat liver. Biochem J. (1994) 301:187–92. 10.1042/bj3010187 PubMed DOI PMC
Bygrave FL, Karjalainen A, Hamada Y. Crosstalk between calcium- and cyclic AMP-mediated signalling systems and the short-term modulation of bile flow in normal and cholestatic rat liver. Cell Signal. (1994) 6:1–9. 10.1016/0898-6568(94)90055-8 PubMed DOI
Kruglov EA, Gautam S, Guerra MT, Nathanson MH. Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology (2011) 54:1790–9. 10.1002/hep.24548 PubMed DOI PMC
Amaya MJ, Nathanson MH. Calcium signaling and the secretory activity of bile duct epithelia. Cell Calcium (2014) 55:317–24. 10.1016/j.ceca.2014.02.003 PubMed DOI PMC
Shibao K, Hirata K, Robert ME, Nathanson MH. Loss of inositol 1,4,5-trisphosphate receptors from cholangiocytes is a final common pathway for cholestasis. Gastroenterology (2003) 124:A692 10.1016/S0016-5085(03)83502-3 PubMed DOI PMC
Combettes L, Dumont M, Berthon B, Erlinger S, Claret M. Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem. (1988) 263:2299–303. PubMed
Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerová D, Rayner A, Dutton L, et al. . Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology (2008) 134:1203–14. 10.1053/j.gastro.2008.01.038 PubMed DOI
Schmitt M, Kubitz R, Lizun S, Wettstein M, Häussinger D. Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology (2001) 33:509–18. 10.1053/jhep.2001.22648 PubMed DOI
Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, et al. . Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics (2007) 17:47–60. 10.1097/01.fpc.0000230418.28091.76 PubMed DOI
Shimokura GH, McGill JM, Schlenker T, Fitz JG. Ursodeoxycholate increases cytosolic calcium concentration and activates CI– currents in a biliary cell line. Gastroenterology (1995) 109:965–72. 10.1016/0016-5085(95)90407-7 PubMed DOI
Dombrowski F, Stieger B, Beuers U. Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab. Invest. (2006) 86:166–74. 10.1038/labinvest.3700371 PubMed DOI
Bouscarel B, Fromm H, Nussbaum R. Ursodeoxycholate mobilizes intracellular Ca2+ and activates phosphorylase a in isolated hepatocytes. Am J Physiol. (1993) 264(2 Pt 1):G243–51. 10.1152/ajpgi.1993.264.2.G243 PubMed DOI
Nathanson MH, Burgstahler AD, Masyuk A, LaRusso NF. Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J. (2001) 358(Pt 1):1–5. 10.1042/bj3580001 PubMed DOI PMC
European Association for the Study of the Liver . EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol. (2009) 51:237-67. 10.1016/j.jhep.2009.04.009 PubMed DOI
European Association for the Study of the Liver . EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J Hepatol. (2017) 67:145–72. 10.1016/j.jhep.2017.03.022 PubMed DOI