High resolution low kV EBSD of heavily deformed and nanocrystalline Aluminium by dictionary-based indexing
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
N00014-16-1-2821
DOD | Office of Naval Research (ONR)
N00014-16-1-2821
DOD | Office of Naval Research (ONR)
PubMed
30030500
PubMed Central
PMC6054629
DOI
10.1038/s41598-018-29315-8
PII: 10.1038/s41598-018-29315-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We demonstrate the capability of a novel Electron Backscatter Diffraction (EBSD) dictionary indexing (DI) approach by means of orientation mapping of a highly deformed graded microstructure in a shot peened Aluminium 7075-T651 alloy. A low microscope accelerating voltage was used to extract, for the first time from a bulk sample, statistically significant orientation information from a region close to a shot crater, showing both recrystallized nano-grains and heavily deformed grains. We show that the robust nature of the DI method allows for faster acquisition of lower quality patterns, limited only by the camera hardware, compared to the acquisition speed and pattern quality required for the conventional Hough indexing (HI) approach. The proposed method paves the way for the quantitative and accurate EBSD characterization of heavily deformed microstructures at a sub-micrometer length scale in cases where the current indexing techniques largely fail.
School of Materials University of Manchester Manchester M13 9PL UK
Thermo Fisher Scientific Materials and Structural Analysis Division Brno 627 00 Czech Republic
See more in PubMed
Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron Backscatter Diffraction in Materials Science (Springer, 2009).
Chen YH, et al. A dictionary approach to EBSD indexing. Microscopy and Microanalysis. 2015;21:739–752. doi: 10.1017/S1431927615000756. PubMed DOI
Ram F, Wright S, Singh S, De Graef M. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing. Ultramicroscopy. 2017;181:17–26. doi: 10.1016/j.ultramic.2017.04.016. PubMed DOI
Winiarski B, et al. High spatial resolution evaluation of residual stresses in shot peened specimens containing sharp and blunt notches by micro-hole drilling, micro-slot cutting and micro-x-ray diffraction methods. Experimental Mechanics. 2016;56:1449–1463. doi: 10.1007/s11340-016-0182-x. DOI
Altenberger I, Scholtes B, Martin U, Oettel H. Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Materials Science and Engineering: A. 1999;264:1–16. doi: 10.1016/S0921-5093(98)01121-6. DOI
Tao N, Sui M, Lu J, Lua K. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostructured Materials. 1999;11:433–440. doi: 10.1016/S0965-9773(99)00324-4. DOI
Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Materials Science and Engineering: A. 2000;286:91–95. doi: 10.1016/S0921-5093(00)00686-9. DOI
Kamaya M, Wilkinson AJ, Titchmarsh JM. Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction. Acta Materialia. 2006;54:539–548. doi: 10.1016/j.actamat.2005.08.046. DOI
Child D, West G, Thomson R. Assessment of surface hardening effects from shot peening on a ni-based alloy using electron backscatter diffraction techniques. Acta Materialia. 2011;59:4825–4834. doi: 10.1016/j.actamat.2011.04.025. DOI
Thomas, M. & Jackson, M. The role of temperature and alloy chemistry on subsurface deformation mechanisms during shot peening of titanium alloys. Scripta Materialia66, 1065–1068 Viewpoint Set no. 50: Twinning Induced PlasticitySteels (2012).
Thomas M, Lindley T, Rugg D, Jackson M. The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure. Acta Materialia. 2012;60:5040–5048. doi: 10.1016/j.actamat.2012.06.017. DOI
Soady K, et al. Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue. International Journal of Fatigue. 2013;54:106–117. doi: 10.1016/j.ijfatigue.2013.03.019. DOI
Messé OMDM, Stekovic S, Hardy MC, Rae CMF. Characterization of plastic deformation induced by shot-peening in a Ni-base superalloy. JOM. 2014;66:2502–2515. doi: 10.1007/s11837-014-1184-8. DOI
Fargas G, Roa J, Mateo A. Effect of shot peening on metastable austenitic stainless steels. Materials Science and Engineering: A. 2015;641:290–296. doi: 10.1016/j.msea.2015.05.079. DOI
Mackenzie J. Second paper on the statistics associated with the random disorientation of cubes. Biometrika. 1958;45:229–240. doi: 10.1093/biomet/45.1-2.229. DOI
Winiarski B, Burnett TL, Withers PJ. Xe+ plasma FIB milling and lift-out approach for site-specific preparation of large volume blocks for 3D - EBSD. Microscopy and Microanalysis. 2016;22:838–839. doi: 10.1017/S1431927616005031. DOI
Burnett T, et al. Large volume serial sectioning tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy. 2015;161:119–129. doi: 10.1016/j.ultramic.2015.11.001. PubMed DOI
Singh S, De Graef M. Orientation sampling for dictionary-based diffraction pattern indexing methods. Modeling and Simulation in Material Science and Engineering. 2016;159:81–94.
Wright SI, et al. Introduction and comparison of new EBSD post-processing methodologies. Ultramicroscopy. 2015;159:81–94. doi: 10.1016/j.ultramic.2015.08.001. PubMed DOI
Marquardt K, et al. Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: Overcoming indexing difficulties on geological materials. American Mineralogist. 2017;102:1843–1855. doi: 10.2138/am-2017-6062. DOI
Callahan PG, De Graef M. Dynamical electron backscatter diffraction patterns. part i: Pattern simulations. Microscopy and Microanalysis. 2013;19:1255–1265. doi: 10.1017/S1431927613001840. PubMed DOI
Joy, D. C. Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, 1995).
Powell, M. The BOBYQA algorithm for bound constrained optimization without derivatives. Tech. Rep., Department of Applied Mathematics and Theoretical Physics, Cambridge University (2009).
Singh, S., Ram, F. & De Graef, M. Application of forward models to crystal orientation refinement. Journal of Applied Crystallography50 (2017).
Bachmann, F., Hielscher, R. & Schaeben, H. Texture analysis with MTEX – free and open source software toolbox. In Texture and Anisotropy of Polycrystals III, vol. 160 of Solid State Phenomena, 63–68 (Trans Tech Publications, 2010).
Bachmann F, Hielscher R, Schaeben H. Grain detection from 2D and 3D EBSD data—specification of the MTEX algorithm. Ultramicroscopy. 2011;111:1720–1733. doi: 10.1016/j.ultramic.2011.08.002. PubMed DOI
Hielscher R, Schaeben H. A novel pole figure inversion method: specification of the MTEX algorithm. Journal of Applied Crystallography. 2008;41:1024–1037. doi: 10.1107/S0021889808030112. DOI