Laser ablation-based techniques for microplastic analysis: recent advances and applications

. 2025 Oct 29 ; 40 (11) : 3044-3062. [epub] 20250821

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41048855

Microplastics have emerged as significant environmental contaminants due to the increasing production of polymer-based products and their limited disposal options. The persistence, bioaccumulation potential, and ability of microplastics to adsorb and transport toxic contaminants pose a risk to ecosystems and human health. Consequently, precise detection, characterization, and visualization of microplastics in various matrices are of paramount importance. However, the inherent challenges of analysing particles across broad size ranges with diverse physicochemical properties call for advanced analytical methods. This review focuses on two promising laser ablation-based techniques: Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Both methods have demonstrated their utility in spatially resolved analyses, enabling the elemental characterization of microplastics. The review systematically evaluates existing studies employing these techniques, highlighting their benefits, limitations, and potential applications. Furthermore, it emphasizes the complementary nature of LIBS and LA-ICP-MS, advocating their tandem use for a comprehensive analysis of microplastics. By addressing current gaps in microplastic environmental research, this review aims to propose novel methodologies that can help to advance the understanding of the environmental fate and impacts of microplastics, facilitating the development of effective mitigation strategies.

Zobrazit více v PubMed

Sharma V. K. Ma X. Lichtfouse E. Robert D. Environ. Chem. Lett. 2023;21:1933–1936. doi: 10.1007/s10311-022-01539-1. DOI

Fang C. Luo Y. Naidu R. TrAC, Trends Anal. Chem. 2023;166:117158. doi: 10.1016/j.trac.2023.117158. DOI

Bermúdez J. R. Swarzenski P. W. MethodsX. 2021;8:101516. doi: 10.1016/j.mex.2021.101516. PubMed DOI PMC

Shi Y. Shi L. Huang H. Ye K. Yang L. Wang Z. Sun Y. Li D. Shi Y. Xiao L. Gao S. Environ. Chem. Lett. 2024;22:1861–1888. doi: 10.1007/s10311-024-01731-5. DOI

Toussaint B. Raffael B. Angers-Loustau A. Gilliland D. Kestens V. Petrillo M. Rio-Echevarria I. M. Van den Eede G. Food Addit. Contam., Part A: Chem., Anal., Control, Exposure Risk Assess. 2019;36:639–673. doi: 10.1080/19440049.2019.1583381. DOI

Limbeck A. Brunnbauer L. Lohninger H. Pořízka P. Modlitbová P. Kaiser J. Janovszky P. Kéri A. Galbács G. Anal. Chim. Acta. 2021;1147:72–98. doi: 10.1016/j.aca.2020.12.054. PubMed DOI

Pořízka P., Modlitbová P. and Kaiser J., in Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, Springer International Publishing, Cham, 2022, pp. 139–164

Modlitbová P. Pořízka P. Kaiser J. TrAC, Trends Anal. Chem. 2020;122:115729. doi: 10.1016/j.trac.2019.115729. DOI

Modlitbová P., Pořízka P. and Kaiser J., in Laser Induced Breakdown Spectroscopy (LIBS), Wiley, 2023, pp. 729–744

Zeng Q. Sirven J. B. Gabriel J. C. P. Tay C. Y. Lee J. M. TrAC, Trends Anal. Chem. 2021;140:116280. doi: 10.1016/j.trac.2021.116280. DOI

Neo E. R. K. Yeo Z. Low J. S. C. Goodship V. Debattista K. Resour., Conserv. Recycl. 2022;180:106217. doi: 10.1016/j.resconrec.2022.106217. DOI

Sommer C. Schneider L. M. Nguyen J. Prume J. A. Lautze K. Koch M. Mar. Pollut. Bull. 2021;171:112789. doi: 10.1016/j.marpolbul.2021.112789. PubMed DOI

Becker J. S. Matusch A. Wu B. Anal. Chim. Acta. 2014;835:1–18. doi: 10.1016/j.aca.2014.04.048. PubMed DOI

Pozebon V. L. Scheffler D. Dressler G. L. J. Anal. At. Spectrom. 2017;32:890–919. doi: 10.1039/C7JA00026J. DOI

Chew D. Drost K. Marsh J. H. Petrus J. A. Chem. Geol. 2021;559:119917. doi: 10.1016/j.chemgeo.2020.119917. DOI

Liu Y. S. Hu Z. C. Li M. Gao S. Chin. Sci. Bull. 2013;58:3863–3878. doi: 10.1007/s11434-013-5901-4. DOI

Stehrer T. Heitz J. Pedarnig J. D. Huber N. Aeschlimann B. Günther D. Scherndl H. Linsmeyer T. Wolfmeir H. Arenholz E. Anal. Bioanal. Chem. 2010;398:415–424. doi: 10.1007/s00216-010-3963-6. PubMed DOI

de Bruin-Hoegée M. Corzo R. Zoon P. D. Vergeer P. Schoorl J. van der Schans M. J. Noort D. van Asten A. C. Forensic Chem. 2024;38:100570. doi: 10.1016/j.forc.2024.100570. DOI

Brunnbauer L. Mayr M. Larisegger S. Nelhiebel M. Pagnin L. Wiesinger R. Schreiner M. Limbeck A. Sci. Rep. 2020;10:12513. doi: 10.1038/s41598-020-69210-9. PubMed DOI PMC

Makino Y. Nakazato T. J. Anal. At. Spectrom. 2021;36:1895–1899. doi: 10.1039/D1JA00198A. DOI

Willner J. Brunnbauer L. Quarles C. D. Nelhiebel M. Larisegger S. Limbeck A. J. Anal. At. Spectrom. 2023;38:2028–2037. doi: 10.1039/D3JA00237C. DOI

Pořízka P. Brunnbauer L. Porkert M. Rozman U. Marolt G. Holub D. Kizovský M. Benešová M. Samek O. Limbeck A. Kaiser J. Kalčíková G. Chemosphere. 2023;313:137373. doi: 10.1016/j.chemosphere.2022.137373. PubMed DOI

de Bruin-Hoegée M. Schoorl J. Zoon P. van der Schans M. J. Noort D. van Asten A. C. Forensic Chem. 2023;35(5):100515. doi: 10.1016/j.forc.2023.100515. DOI

Pořízka P. Klus J. Képeš E. Prochazka D. Hahn D. W. Kaiser J. Spectrochim. Acta, Part B. 2018;148:65–82. doi: 10.1016/j.sab.2018.05.030. DOI

Zhang D. Zhang H. Zhao Y. Chen Y. Ke C. Xu T. He Y. Appl. Spectrosc. Rev. 2022;57(2):89–111. doi: 10.1080/05704928.2020.1843175. DOI

Becker S. J. Zoriy M. Matusch A. Wu B. Palm C. Becker J. S. Mass Spectrom. Rev. 2009;29:156–175. doi: 10.1002/mas.20239. PubMed DOI

Sancey L. Motto-Ros V. Busser B. Kotb S. Benoit J. M. Piednoir A. Lux F. Tillement O. Panczer G. Yu J. Sci. Rep. 2014;4:1–8.

Motto-Ros V. Sancey L. Ma Q. L. Lux F. Bai X. S. Wang X. C. Yu J. Panczer G. Tillement O. Appl. Phys. Lett. 2012;101:223702. doi: 10.1063/1.4768777. DOI

Brunnbauer L. Jirku M. Quarles C. D. Limbeck A. Talanta. 2024;269:125500. doi: 10.1016/j.talanta.2023.125500. PubMed DOI

Yadav P. Mishra V. Int. Biodeterior. Biodegrad. 2025;196:105953. doi: 10.1016/j.ibiod.2024.105953. DOI

Islam T. Cheng H. Sci. Total Environ. 2024;953:176163. doi: 10.1016/j.scitotenv.2024.176163. PubMed DOI

Kushwaha M. Shankar S. Goel D. Singh S. Rahul J. Rachna K. Singh J. Mar. Pollut. Bull. 2024;209:117109. doi: 10.1016/j.marpolbul.2024.117109. PubMed DOI

Liu J. Zheng L. Environ. Pollut. 2025;368:125700. doi: 10.1016/j.envpol.2025.125700. PubMed DOI

Binda G. Kalčíková G. Allan I. J. Hurley R. Rødland E. Spanu D. Nizzetto L. TrAC, Trends Anal. Chem. 2024;172:117566. doi: 10.1016/j.trac.2024.117566. DOI

Zafar R. Bang T. H. Lee Y. K. Begum M. S. Rabani I. Hong S. Hur J. Sci. Total Environ. 2022;843:157010. doi: 10.1016/j.scitotenv.2022.157010. PubMed DOI

Wang Y. Zhao J. Fu Z. Guan D. Zhang D. Zhang H. Zhang Q. Xie J. Sun Y. Wang D. Environ. Pollut. 2024;346:123623. doi: 10.1016/j.envpol.2024.123623. PubMed DOI

Rozman U. Filker S. Kalčíková G. Environ. Pollut. 2023;322:121157. doi: 10.1016/j.envpol.2023.121157. PubMed DOI

Liu S. Huang W. Yang J. Xiong Y. Huang Z. Wang J. Cai T. Dang Z. Yang C. J. Hazard. Mater. 2023;453:131277. doi: 10.1016/j.jhazmat.2023.131277. PubMed DOI

Andrady A. L. and Koongolla B., in Plastics and the Ocean, Wiley, 2022, pp. 227–268

Kalčíková G. Bundschuh M. Environ. Toxicol. Chem. 2022;41:838–843. doi: 10.1002/etc.5195. PubMed DOI

He S. Jia M. Xiang Y. Song B. Xiong W. Cao J. Peng H. Yang Y. Wang W. Yang Z. Zeng G. J. Hazard. Mater. 2022;424:127286. doi: 10.1016/j.jhazmat.2021.127286. PubMed DOI

Rummel C. D. Jahnke A. Gorokhova E. Kühnel D. Schmitt-Jansen M. Environ. Sci. Technol. Lett. 2017;4:258–267. doi: 10.1021/acs.estlett.7b00164. DOI

Khalid N. Aqeel M. Noman A. Khan S. M. Akhter N. Environ. Pollut. 2021;290:118104. doi: 10.1016/j.envpol.2021.118104. PubMed DOI

Cao Y. Zhao M. Ma X. Song Y. Zuo S. Li H. Deng W. Sci. Total Environ. 2021;788:147620. doi: 10.1016/j.scitotenv.2021.147620. PubMed DOI

Abbasi S. Chemosphere. 2024;346:140604. doi: 10.1016/j.chemosphere.2023.140604. PubMed DOI

Metz T. Koch M. Lenz P. Mar. Pollut. Bull. 2020;157:111330. doi: 10.1016/j.marpolbul.2020.111330. PubMed DOI

Modlitbová P. Zikmundová E. Pořízka P. Kaiser J. TrAC, Trends Anal. Chem. 2025;184:118110. doi: 10.1016/j.trac.2024.118110. DOI

Hahn D. W. Omenetto N. Appl. Spectrosc. 2010;64:335–366. doi: 10.1366/000370210793561691. PubMed DOI

Hahn D. W. Omenetto N. Appl. Spectrosc. 2012;66:347–419. doi: 10.1366/11-06574. PubMed DOI

Russo R. E. Appl. Phys. A: Mater. Sci. Process. 2023;129:1–12. doi: 10.1007/s00339-023-06425-3. DOI

Galbács G. Anal. Bioanal. Chem. 2015;407:7537–7562. doi: 10.1007/s00216-015-8855-3. PubMed DOI

Sommer C. Nguyen J. Menzel T. Prume J. A. Ruckdäschel H. Koch M. Polym. Test. 2022;112:107623. doi: 10.1016/j.polymertesting.2022.107623. DOI

Sommer C. Nguyen J. Menzel T. Ruckdäschel H. Koch M. Chemosphere. 343;343:140105. doi: 10.1016/j.chemosphere.2023.140105. PubMed DOI

Andoh C. N. Attiogbe F. Bonsu Ackerson N. O. Antwi M. Adu-Boahen K. Infrared Phys. Technol. 2024;136:105070. doi: 10.1016/j.infrared.2023.105070. DOI

Dintcheva N. T. Polymer. 2024;306:127136. doi: 10.1016/j.polymer.2024.127136. DOI

Królicka A. Maj A. Łój G. Materials. 2023;16(20):6641. doi: 10.3390/ma16206641. PubMed DOI PMC

Chen D. Wang T. Ma Y. Wang G. Kong Q. Zhang P. Li R. Sci. Total Environ. 2020;743:140850. doi: 10.1016/j.scitotenv.2020.140850. PubMed DOI

Chen X. Ali S. Yuan L. Guo F. Huang G. Shi W. Chen X. Chemosphere. 2022;287:132172. doi: 10.1016/j.chemosphere.2021.132172. PubMed DOI

Giugliano R. Cocciaro B. Poggialini F. Legnaioli S. Palleschi V. Locritani M. Merlino S. Sensors. 2022;22(18):6910. doi: 10.3390/s22186910. PubMed DOI PMC

Tognana S. D’Angelo C. Montecinos S. Pereyra M. Salgueiro W. Chemosphere. 2022;303(2):135168. doi: 10.1016/j.chemosphere.2022.135168. PubMed DOI

Vaisakh P. S. Adarsh U. K. Amrutha K. Warrier A. K. Kartha V. B. Unnikrishnan V. K. Environ. Res. 2023;231:116198. doi: 10.1016/j.envres.2023.116198. PubMed DOI

Yousaf H. Bashir S. Water, Air, Soil Pollut. 2024;235:1–24. doi: 10.1007/s11270-023-06862-z. DOI

Vasudeva M. Adarsh U. K. Warrier A. K. George S. D. Unnikrishnan V. K. Sci. Rep. 2024;14:19327. doi: 10.1038/s41598-024-70501-8. PubMed DOI PMC

Parobková V. Holub D. Kizovský M. Kalčíková G. Rozman U. Urík M. Novotný K. Samek O. Zikmund T. Pořízka P. Kaiser J. Heliyon. 2024;10(18):e37844. doi: 10.1016/j.heliyon.2024.e37844. PubMed DOI PMC

Harmon R. S. De Lucia F. C. Miziolek A. W. McNesby K. L. Walters R. A. French P. D. Geochem.: Explor., Environ., Anal. 2005;5:21–28. doi: 10.1144/1467-7873/03-059. DOI

Cuñat J. Palanco S. Carrasco F. Simón M. D. Laserna J. J. J. Anal. At. Spectrom. 2005;20:295–300. doi: 10.1039/B417161F. DOI

Gaft M. Sapir-Sofer I. Modiano H. Stana R. Spectrochim. Acta, Part B. 2007;62:1496–1503. doi: 10.1016/j.sab.2007.10.041. DOI

Li L. Geng S. Wu C. Song K. Sun F. Visvanathan C. Xie F. Wang Q. Environ. Pollut. 2019;254:112951. doi: 10.1016/j.envpol.2019.07.119. PubMed DOI

Cutroneo L. Reboa A. Geneselli I. Capello M. Mar. Pollut. Bull. 2021;166:112216. doi: 10.1016/j.marpolbul.2021.112216. PubMed DOI

Campo E. A., in Selection of Polymeric Materials, Elsevier, 2008, pp. 1–39

Günther D. Hattendorf B. TrAC, Trends Anal. Chem. 2005;24:255–265. doi: 10.1016/j.trac.2004.11.017. DOI

Sussulini A. Becker J. S. Becker J. S. Mass Spectrom. Rev. 2017;36(1):47–57. doi: 10.1002/mas.21481. PubMed DOI

Penanes P. A. Galán A. R. Huelga-Suarez G. Rodríguez-Castrillón J. Á. Moldovan M. Garcia Alonso J. I. J. Anal. At. Spectrom. 2022;37:701–726. doi: 10.1039/D2JA00018K. DOI

Bonta M. Limbeck A. J. Anal. At. Spectrom. 2018;33:1631–1637. doi: 10.1039/C8JA00161H. DOI

Voss M. Nunes M. A. G. Corazza G. Flores E. M. M. Müller E. I. Dressler V. L. Talanta. 2017;170:488–495. doi: 10.1016/j.talanta.2017.04.048. PubMed DOI

Frick D. A. Günther D. J. Anal. At. Spectrom. 2012;27:1294–1303. doi: 10.1039/C2JA30072A. DOI

Van Helden T. Mervič K. Nemet I. van Elteren J. T. Vanhaecke F. Rončević S. Šala M. Van Acker T. Anal. Chim. Acta. 2024;1287:342089. doi: 10.1016/j.aca.2023.342089. PubMed DOI

Kiyataka P. H. M. Dantas S. T. Albino A. C. Pallone J. A. L. Food Anal. Methods. 2018;11:1–9. doi: 10.1007/s12161-017-0951-x. DOI

Marturano V. Cerruti P. Ambrogi V. Phys. Sci. Rev. 2017;2(6) doi: 10.1515/psr-2016-0130. DOI

Pozebon D. Scheffler G. L. Dressler V. L. Nunes M. A. G. J. Anal. At. Spectrom. 2014;29:2204–2228. doi: 10.1039/C4JA00250D. DOI

El Hadri H. Gigault J. Mounicou S. Grassl B. Reynaud S. Mar. Pollut. Bull. 2020;160:111716. doi: 10.1016/j.marpolbul.2020.111716. PubMed DOI

Lockwood T. E. Gonzalez De Vega R. Clases D. J. Anal. At. Spectrom. 2021;36:2536–2544. doi: 10.1039/D1JA00297J. DOI

Van Acker T. Rua-Ibarz A. Vanhaecke F. Bolea-Fernandez E. Anal. Chem. 2023;95:18579–18586. doi: 10.1021/acs.analchem.3c04473. PubMed DOI

Brunnbauer L. Kronlachner L. Foisner E. Limbeck A. J. Anal. At. Spectrom. 2025;40:753–761. doi: 10.1039/D4JA00351A. PubMed DOI PMC

Guillong M. Horn I. Günther D. J. Anal. At. Spectrom. 2003;18:1224–1230. doi: 10.1039/B305434A. DOI

Kononenko T. V. Konov V. I. Garnov S. V. Danielius R. Piskarskas A. Tamosauskas G. Dausinger F. Quantum Electron. 1999;29:724–728. doi: 10.1070/QE1999v029n08ABEH001560. DOI

LaHaye N. L. Harilal S. S. Diwakar P. K. Hassanein A. J. Anal. At. Spectrom. 2013;28:1781. doi: 10.1039/C3JA50200G. DOI

Inductively Coupled Plasma Mass Spectrometry Handbook, ed. S. M. Nelms, Wiley, 2005

Wang Y. jie Bai J. jia Wei Y. Zhao C. X. Shao Z. Chen M. L. Wang J. H. J. Hazard. Mater. 2024;465:133029. doi: 10.1016/j.jhazmat.2023.133029. PubMed DOI

Van Acker T. Theiner S. Bolea-Fernandez E. Vanhaecke F. Koellensperger G. Nat. Rev. Methods Primers. 2023;3:53. doi: 10.1038/s43586-023-00245-8. DOI

Van Malderen S. J. M. Managh A. J. Sharp B. L. Vanhaecke F. J. Anal. At. Spectrom. 2016;31:423–439. doi: 10.1039/C5JA00430F. DOI

Van Elteren J. T. Šelih V. S. Šala M. J. Anal. At. Spectrom. 2019;34:1919–1931. doi: 10.1039/C9JA00166B. DOI

Šala M. Šelih V. S. Stremtan C. C. Tamas T. Van Elteren J. T. J. Anal. At. Spectrom. 2021;36:75–79. doi: 10.1039/D0JA00381F. DOI

Chen P. Chen B. He M. Zhou Y. Lei L. Han J. Zhou B. Hu L. Hu B. Chin. Chem. Lett. 2025;36:109908. doi: 10.1016/j.cclet.2024.109908. DOI

Montaño M. D. Olesik J. W. Barber A. G. Challis K. Ranville J. F. Anal. Bioanal. Chem. 2016;408:5053–5074. doi: 10.1007/s00216-016-9676-8. PubMed DOI

Bolea-Fernandez E. Rua-Ibarz A. Velimirovic M. Tirez K. Vanhaecke F. J. Anal. At. Spectrom. 2020;35:455–460. doi: 10.1039/C9JA00379G. DOI

Hendriks L. Mitrano D. M. Environ. Sci. Technol. 2023;57:7263–7272. doi: 10.1021/acs.est.3c01192. PubMed DOI

Xu Z. Sui Q. Li A. Sun M. Zhang L. Lyu S. Zhao W. Sci. Total Environ. 2020;733:139218. doi: 10.1016/j.scitotenv.2020.139218. PubMed DOI

Santana-Viera S. Montesdeoca-Esponda S. Guedes-Alonso R. Sosa-Ferrera Z. Santana-Rodríguez J. J. Trends Environ. Anal. Chem. 2021;29:e00114. doi: 10.1016/j.teac.2021.e00114. DOI

Holmes L. A. Turner A. Thompson R. C. Environ. Pollut. 2012;160:42–48. doi: 10.1016/j.envpol.2011.08.052. PubMed DOI

Turner A. Holmes L. A. Environ. Chem. 2015;12:600. doi: 10.1071/EN14143. DOI

Brennecke D. Duarte B. Paiva F. Caçador I. Canning-Clode J. Estuarine, Coastal Shelf Sci. 2016;178:189–195. doi: 10.1016/j.ecss.2015.12.003. DOI

Pfeiffer F. Fischer E. K. Front. Environ. Sci. 2020;8 doi: 10.3389/fenvs.2020.572424. DOI

Tuuri E. M. Gascooke J. R. Leterme S. C. Sci. Total Environ. 2024;947:174279. doi: 10.1016/j.scitotenv.2024.174279. PubMed DOI

Cole M. Webb H. Lindeque P. K. Fileman E. S. Halsband C. Galloway T. S. Sci. Rep. 2014;4:4528. doi: 10.1038/srep04528. PubMed DOI PMC

Pořízka P. Klus J. Mašek J. Rajnoha M. Prochazka D. Modlitbová P. Novotný J. Burget R. Novotný K. Kaiser J. Sci. Rep. 2017;7:3160. doi: 10.1038/s41598-017-03426-0. PubMed DOI PMC

Luo X. Zhang Y. Kang S. Chen R. Gao T. Allen S. J. Hazard. Mater. 2025;488:137509. doi: 10.1016/j.jhazmat.2025.137509. PubMed DOI

Premarathna K. S. D. Rajapaksha A. U. Vithanage M. Trends Environ. Anal. Chem. 2025;45:e00256. doi: 10.1016/j.teac.2024.e00256. DOI

Bolea-Fernandez E. Rua-Ibarz A. Velimirovic M. Tirez K. Vanhaecke F. J. Anal. At. Spectrom. 2020;35:455–460. doi: 10.1039/C9JA00379G. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...