Laser ablation-based techniques for microplastic analysis: recent advances and applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41048855
PubMed Central
PMC12489450
DOI
10.1039/d5ja00141b
PII: d5ja00141b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microplastics have emerged as significant environmental contaminants due to the increasing production of polymer-based products and their limited disposal options. The persistence, bioaccumulation potential, and ability of microplastics to adsorb and transport toxic contaminants pose a risk to ecosystems and human health. Consequently, precise detection, characterization, and visualization of microplastics in various matrices are of paramount importance. However, the inherent challenges of analysing particles across broad size ranges with diverse physicochemical properties call for advanced analytical methods. This review focuses on two promising laser ablation-based techniques: Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Both methods have demonstrated their utility in spatially resolved analyses, enabling the elemental characterization of microplastics. The review systematically evaluates existing studies employing these techniques, highlighting their benefits, limitations, and potential applications. Furthermore, it emphasizes the complementary nature of LIBS and LA-ICP-MS, advocating their tandem use for a comprehensive analysis of microplastics. By addressing current gaps in microplastic environmental research, this review aims to propose novel methodologies that can help to advance the understanding of the environmental fate and impacts of microplastics, facilitating the development of effective mitigation strategies.
Zobrazit více v PubMed
Sharma V. K. Ma X. Lichtfouse E. Robert D. Environ. Chem. Lett. 2023;21:1933–1936. doi: 10.1007/s10311-022-01539-1. DOI
Fang C. Luo Y. Naidu R. TrAC, Trends Anal. Chem. 2023;166:117158. doi: 10.1016/j.trac.2023.117158. DOI
Bermúdez J. R. Swarzenski P. W. MethodsX. 2021;8:101516. doi: 10.1016/j.mex.2021.101516. PubMed DOI PMC
Shi Y. Shi L. Huang H. Ye K. Yang L. Wang Z. Sun Y. Li D. Shi Y. Xiao L. Gao S. Environ. Chem. Lett. 2024;22:1861–1888. doi: 10.1007/s10311-024-01731-5. DOI
Toussaint B. Raffael B. Angers-Loustau A. Gilliland D. Kestens V. Petrillo M. Rio-Echevarria I. M. Van den Eede G. Food Addit. Contam., Part A: Chem., Anal., Control, Exposure Risk Assess. 2019;36:639–673. doi: 10.1080/19440049.2019.1583381. DOI
Limbeck A. Brunnbauer L. Lohninger H. Pořízka P. Modlitbová P. Kaiser J. Janovszky P. Kéri A. Galbács G. Anal. Chim. Acta. 2021;1147:72–98. doi: 10.1016/j.aca.2020.12.054. PubMed DOI
Pořízka P., Modlitbová P. and Kaiser J., in Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, Springer International Publishing, Cham, 2022, pp. 139–164
Modlitbová P. Pořízka P. Kaiser J. TrAC, Trends Anal. Chem. 2020;122:115729. doi: 10.1016/j.trac.2019.115729. DOI
Modlitbová P., Pořízka P. and Kaiser J., in Laser Induced Breakdown Spectroscopy (LIBS), Wiley, 2023, pp. 729–744
Zeng Q. Sirven J. B. Gabriel J. C. P. Tay C. Y. Lee J. M. TrAC, Trends Anal. Chem. 2021;140:116280. doi: 10.1016/j.trac.2021.116280. DOI
Neo E. R. K. Yeo Z. Low J. S. C. Goodship V. Debattista K. Resour., Conserv. Recycl. 2022;180:106217. doi: 10.1016/j.resconrec.2022.106217. DOI
Sommer C. Schneider L. M. Nguyen J. Prume J. A. Lautze K. Koch M. Mar. Pollut. Bull. 2021;171:112789. doi: 10.1016/j.marpolbul.2021.112789. PubMed DOI
Becker J. S. Matusch A. Wu B. Anal. Chim. Acta. 2014;835:1–18. doi: 10.1016/j.aca.2014.04.048. PubMed DOI
Pozebon V. L. Scheffler D. Dressler G. L. J. Anal. At. Spectrom. 2017;32:890–919. doi: 10.1039/C7JA00026J. DOI
Chew D. Drost K. Marsh J. H. Petrus J. A. Chem. Geol. 2021;559:119917. doi: 10.1016/j.chemgeo.2020.119917. DOI
Liu Y. S. Hu Z. C. Li M. Gao S. Chin. Sci. Bull. 2013;58:3863–3878. doi: 10.1007/s11434-013-5901-4. DOI
Stehrer T. Heitz J. Pedarnig J. D. Huber N. Aeschlimann B. Günther D. Scherndl H. Linsmeyer T. Wolfmeir H. Arenholz E. Anal. Bioanal. Chem. 2010;398:415–424. doi: 10.1007/s00216-010-3963-6. PubMed DOI
de Bruin-Hoegée M. Corzo R. Zoon P. D. Vergeer P. Schoorl J. van der Schans M. J. Noort D. van Asten A. C. Forensic Chem. 2024;38:100570. doi: 10.1016/j.forc.2024.100570. DOI
Brunnbauer L. Mayr M. Larisegger S. Nelhiebel M. Pagnin L. Wiesinger R. Schreiner M. Limbeck A. Sci. Rep. 2020;10:12513. doi: 10.1038/s41598-020-69210-9. PubMed DOI PMC
Makino Y. Nakazato T. J. Anal. At. Spectrom. 2021;36:1895–1899. doi: 10.1039/D1JA00198A. DOI
Willner J. Brunnbauer L. Quarles C. D. Nelhiebel M. Larisegger S. Limbeck A. J. Anal. At. Spectrom. 2023;38:2028–2037. doi: 10.1039/D3JA00237C. DOI
Pořízka P. Brunnbauer L. Porkert M. Rozman U. Marolt G. Holub D. Kizovský M. Benešová M. Samek O. Limbeck A. Kaiser J. Kalčíková G. Chemosphere. 2023;313:137373. doi: 10.1016/j.chemosphere.2022.137373. PubMed DOI
de Bruin-Hoegée M. Schoorl J. Zoon P. van der Schans M. J. Noort D. van Asten A. C. Forensic Chem. 2023;35(5):100515. doi: 10.1016/j.forc.2023.100515. DOI
Pořízka P. Klus J. Képeš E. Prochazka D. Hahn D. W. Kaiser J. Spectrochim. Acta, Part B. 2018;148:65–82. doi: 10.1016/j.sab.2018.05.030. DOI
Zhang D. Zhang H. Zhao Y. Chen Y. Ke C. Xu T. He Y. Appl. Spectrosc. Rev. 2022;57(2):89–111. doi: 10.1080/05704928.2020.1843175. DOI
Becker S. J. Zoriy M. Matusch A. Wu B. Palm C. Becker J. S. Mass Spectrom. Rev. 2009;29:156–175. doi: 10.1002/mas.20239. PubMed DOI
Sancey L. Motto-Ros V. Busser B. Kotb S. Benoit J. M. Piednoir A. Lux F. Tillement O. Panczer G. Yu J. Sci. Rep. 2014;4:1–8.
Motto-Ros V. Sancey L. Ma Q. L. Lux F. Bai X. S. Wang X. C. Yu J. Panczer G. Tillement O. Appl. Phys. Lett. 2012;101:223702. doi: 10.1063/1.4768777. DOI
Brunnbauer L. Jirku M. Quarles C. D. Limbeck A. Talanta. 2024;269:125500. doi: 10.1016/j.talanta.2023.125500. PubMed DOI
Yadav P. Mishra V. Int. Biodeterior. Biodegrad. 2025;196:105953. doi: 10.1016/j.ibiod.2024.105953. DOI
Islam T. Cheng H. Sci. Total Environ. 2024;953:176163. doi: 10.1016/j.scitotenv.2024.176163. PubMed DOI
Kushwaha M. Shankar S. Goel D. Singh S. Rahul J. Rachna K. Singh J. Mar. Pollut. Bull. 2024;209:117109. doi: 10.1016/j.marpolbul.2024.117109. PubMed DOI
Liu J. Zheng L. Environ. Pollut. 2025;368:125700. doi: 10.1016/j.envpol.2025.125700. PubMed DOI
Binda G. Kalčíková G. Allan I. J. Hurley R. Rødland E. Spanu D. Nizzetto L. TrAC, Trends Anal. Chem. 2024;172:117566. doi: 10.1016/j.trac.2024.117566. DOI
Zafar R. Bang T. H. Lee Y. K. Begum M. S. Rabani I. Hong S. Hur J. Sci. Total Environ. 2022;843:157010. doi: 10.1016/j.scitotenv.2022.157010. PubMed DOI
Wang Y. Zhao J. Fu Z. Guan D. Zhang D. Zhang H. Zhang Q. Xie J. Sun Y. Wang D. Environ. Pollut. 2024;346:123623. doi: 10.1016/j.envpol.2024.123623. PubMed DOI
Rozman U. Filker S. Kalčíková G. Environ. Pollut. 2023;322:121157. doi: 10.1016/j.envpol.2023.121157. PubMed DOI
Liu S. Huang W. Yang J. Xiong Y. Huang Z. Wang J. Cai T. Dang Z. Yang C. J. Hazard. Mater. 2023;453:131277. doi: 10.1016/j.jhazmat.2023.131277. PubMed DOI
Andrady A. L. and Koongolla B., in Plastics and the Ocean, Wiley, 2022, pp. 227–268
Kalčíková G. Bundschuh M. Environ. Toxicol. Chem. 2022;41:838–843. doi: 10.1002/etc.5195. PubMed DOI
He S. Jia M. Xiang Y. Song B. Xiong W. Cao J. Peng H. Yang Y. Wang W. Yang Z. Zeng G. J. Hazard. Mater. 2022;424:127286. doi: 10.1016/j.jhazmat.2021.127286. PubMed DOI
Rummel C. D. Jahnke A. Gorokhova E. Kühnel D. Schmitt-Jansen M. Environ. Sci. Technol. Lett. 2017;4:258–267. doi: 10.1021/acs.estlett.7b00164. DOI
Khalid N. Aqeel M. Noman A. Khan S. M. Akhter N. Environ. Pollut. 2021;290:118104. doi: 10.1016/j.envpol.2021.118104. PubMed DOI
Cao Y. Zhao M. Ma X. Song Y. Zuo S. Li H. Deng W. Sci. Total Environ. 2021;788:147620. doi: 10.1016/j.scitotenv.2021.147620. PubMed DOI
Abbasi S. Chemosphere. 2024;346:140604. doi: 10.1016/j.chemosphere.2023.140604. PubMed DOI
Metz T. Koch M. Lenz P. Mar. Pollut. Bull. 2020;157:111330. doi: 10.1016/j.marpolbul.2020.111330. PubMed DOI
Modlitbová P. Zikmundová E. Pořízka P. Kaiser J. TrAC, Trends Anal. Chem. 2025;184:118110. doi: 10.1016/j.trac.2024.118110. DOI
Hahn D. W. Omenetto N. Appl. Spectrosc. 2010;64:335–366. doi: 10.1366/000370210793561691. PubMed DOI
Hahn D. W. Omenetto N. Appl. Spectrosc. 2012;66:347–419. doi: 10.1366/11-06574. PubMed DOI
Russo R. E. Appl. Phys. A: Mater. Sci. Process. 2023;129:1–12. doi: 10.1007/s00339-023-06425-3. DOI
Galbács G. Anal. Bioanal. Chem. 2015;407:7537–7562. doi: 10.1007/s00216-015-8855-3. PubMed DOI
Sommer C. Nguyen J. Menzel T. Prume J. A. Ruckdäschel H. Koch M. Polym. Test. 2022;112:107623. doi: 10.1016/j.polymertesting.2022.107623. DOI
Sommer C. Nguyen J. Menzel T. Ruckdäschel H. Koch M. Chemosphere. 343;343:140105. doi: 10.1016/j.chemosphere.2023.140105. PubMed DOI
Andoh C. N. Attiogbe F. Bonsu Ackerson N. O. Antwi M. Adu-Boahen K. Infrared Phys. Technol. 2024;136:105070. doi: 10.1016/j.infrared.2023.105070. DOI
Dintcheva N. T. Polymer. 2024;306:127136. doi: 10.1016/j.polymer.2024.127136. DOI
Królicka A. Maj A. Łój G. Materials. 2023;16(20):6641. doi: 10.3390/ma16206641. PubMed DOI PMC
Chen D. Wang T. Ma Y. Wang G. Kong Q. Zhang P. Li R. Sci. Total Environ. 2020;743:140850. doi: 10.1016/j.scitotenv.2020.140850. PubMed DOI
Chen X. Ali S. Yuan L. Guo F. Huang G. Shi W. Chen X. Chemosphere. 2022;287:132172. doi: 10.1016/j.chemosphere.2021.132172. PubMed DOI
Giugliano R. Cocciaro B. Poggialini F. Legnaioli S. Palleschi V. Locritani M. Merlino S. Sensors. 2022;22(18):6910. doi: 10.3390/s22186910. PubMed DOI PMC
Tognana S. D’Angelo C. Montecinos S. Pereyra M. Salgueiro W. Chemosphere. 2022;303(2):135168. doi: 10.1016/j.chemosphere.2022.135168. PubMed DOI
Vaisakh P. S. Adarsh U. K. Amrutha K. Warrier A. K. Kartha V. B. Unnikrishnan V. K. Environ. Res. 2023;231:116198. doi: 10.1016/j.envres.2023.116198. PubMed DOI
Yousaf H. Bashir S. Water, Air, Soil Pollut. 2024;235:1–24. doi: 10.1007/s11270-023-06862-z. DOI
Vasudeva M. Adarsh U. K. Warrier A. K. George S. D. Unnikrishnan V. K. Sci. Rep. 2024;14:19327. doi: 10.1038/s41598-024-70501-8. PubMed DOI PMC
Parobková V. Holub D. Kizovský M. Kalčíková G. Rozman U. Urík M. Novotný K. Samek O. Zikmund T. Pořízka P. Kaiser J. Heliyon. 2024;10(18):e37844. doi: 10.1016/j.heliyon.2024.e37844. PubMed DOI PMC
Harmon R. S. De Lucia F. C. Miziolek A. W. McNesby K. L. Walters R. A. French P. D. Geochem.: Explor., Environ., Anal. 2005;5:21–28. doi: 10.1144/1467-7873/03-059. DOI
Cuñat J. Palanco S. Carrasco F. Simón M. D. Laserna J. J. J. Anal. At. Spectrom. 2005;20:295–300. doi: 10.1039/B417161F. DOI
Gaft M. Sapir-Sofer I. Modiano H. Stana R. Spectrochim. Acta, Part B. 2007;62:1496–1503. doi: 10.1016/j.sab.2007.10.041. DOI
Li L. Geng S. Wu C. Song K. Sun F. Visvanathan C. Xie F. Wang Q. Environ. Pollut. 2019;254:112951. doi: 10.1016/j.envpol.2019.07.119. PubMed DOI
Cutroneo L. Reboa A. Geneselli I. Capello M. Mar. Pollut. Bull. 2021;166:112216. doi: 10.1016/j.marpolbul.2021.112216. PubMed DOI
Campo E. A., in Selection of Polymeric Materials, Elsevier, 2008, pp. 1–39
Günther D. Hattendorf B. TrAC, Trends Anal. Chem. 2005;24:255–265. doi: 10.1016/j.trac.2004.11.017. DOI
Sussulini A. Becker J. S. Becker J. S. Mass Spectrom. Rev. 2017;36(1):47–57. doi: 10.1002/mas.21481. PubMed DOI
Penanes P. A. Galán A. R. Huelga-Suarez G. Rodríguez-Castrillón J. Á. Moldovan M. Garcia Alonso J. I. J. Anal. At. Spectrom. 2022;37:701–726. doi: 10.1039/D2JA00018K. DOI
Bonta M. Limbeck A. J. Anal. At. Spectrom. 2018;33:1631–1637. doi: 10.1039/C8JA00161H. DOI
Voss M. Nunes M. A. G. Corazza G. Flores E. M. M. Müller E. I. Dressler V. L. Talanta. 2017;170:488–495. doi: 10.1016/j.talanta.2017.04.048. PubMed DOI
Frick D. A. Günther D. J. Anal. At. Spectrom. 2012;27:1294–1303. doi: 10.1039/C2JA30072A. DOI
Van Helden T. Mervič K. Nemet I. van Elteren J. T. Vanhaecke F. Rončević S. Šala M. Van Acker T. Anal. Chim. Acta. 2024;1287:342089. doi: 10.1016/j.aca.2023.342089. PubMed DOI
Kiyataka P. H. M. Dantas S. T. Albino A. C. Pallone J. A. L. Food Anal. Methods. 2018;11:1–9. doi: 10.1007/s12161-017-0951-x. DOI
Marturano V. Cerruti P. Ambrogi V. Phys. Sci. Rev. 2017;2(6) doi: 10.1515/psr-2016-0130. DOI
Pozebon D. Scheffler G. L. Dressler V. L. Nunes M. A. G. J. Anal. At. Spectrom. 2014;29:2204–2228. doi: 10.1039/C4JA00250D. DOI
El Hadri H. Gigault J. Mounicou S. Grassl B. Reynaud S. Mar. Pollut. Bull. 2020;160:111716. doi: 10.1016/j.marpolbul.2020.111716. PubMed DOI
Lockwood T. E. Gonzalez De Vega R. Clases D. J. Anal. At. Spectrom. 2021;36:2536–2544. doi: 10.1039/D1JA00297J. DOI
Van Acker T. Rua-Ibarz A. Vanhaecke F. Bolea-Fernandez E. Anal. Chem. 2023;95:18579–18586. doi: 10.1021/acs.analchem.3c04473. PubMed DOI
Brunnbauer L. Kronlachner L. Foisner E. Limbeck A. J. Anal. At. Spectrom. 2025;40:753–761. doi: 10.1039/D4JA00351A. PubMed DOI PMC
Guillong M. Horn I. Günther D. J. Anal. At. Spectrom. 2003;18:1224–1230. doi: 10.1039/B305434A. DOI
Kononenko T. V. Konov V. I. Garnov S. V. Danielius R. Piskarskas A. Tamosauskas G. Dausinger F. Quantum Electron. 1999;29:724–728. doi: 10.1070/QE1999v029n08ABEH001560. DOI
LaHaye N. L. Harilal S. S. Diwakar P. K. Hassanein A. J. Anal. At. Spectrom. 2013;28:1781. doi: 10.1039/C3JA50200G. DOI
Inductively Coupled Plasma Mass Spectrometry Handbook, ed. S. M. Nelms, Wiley, 2005
Wang Y. jie Bai J. jia Wei Y. Zhao C. X. Shao Z. Chen M. L. Wang J. H. J. Hazard. Mater. 2024;465:133029. doi: 10.1016/j.jhazmat.2023.133029. PubMed DOI
Van Acker T. Theiner S. Bolea-Fernandez E. Vanhaecke F. Koellensperger G. Nat. Rev. Methods Primers. 2023;3:53. doi: 10.1038/s43586-023-00245-8. DOI
Van Malderen S. J. M. Managh A. J. Sharp B. L. Vanhaecke F. J. Anal. At. Spectrom. 2016;31:423–439. doi: 10.1039/C5JA00430F. DOI
Van Elteren J. T. Šelih V. S. Šala M. J. Anal. At. Spectrom. 2019;34:1919–1931. doi: 10.1039/C9JA00166B. DOI
Šala M. Šelih V. S. Stremtan C. C. Tamas T. Van Elteren J. T. J. Anal. At. Spectrom. 2021;36:75–79. doi: 10.1039/D0JA00381F. DOI
Chen P. Chen B. He M. Zhou Y. Lei L. Han J. Zhou B. Hu L. Hu B. Chin. Chem. Lett. 2025;36:109908. doi: 10.1016/j.cclet.2024.109908. DOI
Montaño M. D. Olesik J. W. Barber A. G. Challis K. Ranville J. F. Anal. Bioanal. Chem. 2016;408:5053–5074. doi: 10.1007/s00216-016-9676-8. PubMed DOI
Bolea-Fernandez E. Rua-Ibarz A. Velimirovic M. Tirez K. Vanhaecke F. J. Anal. At. Spectrom. 2020;35:455–460. doi: 10.1039/C9JA00379G. DOI
Hendriks L. Mitrano D. M. Environ. Sci. Technol. 2023;57:7263–7272. doi: 10.1021/acs.est.3c01192. PubMed DOI
Xu Z. Sui Q. Li A. Sun M. Zhang L. Lyu S. Zhao W. Sci. Total Environ. 2020;733:139218. doi: 10.1016/j.scitotenv.2020.139218. PubMed DOI
Santana-Viera S. Montesdeoca-Esponda S. Guedes-Alonso R. Sosa-Ferrera Z. Santana-Rodríguez J. J. Trends Environ. Anal. Chem. 2021;29:e00114. doi: 10.1016/j.teac.2021.e00114. DOI
Holmes L. A. Turner A. Thompson R. C. Environ. Pollut. 2012;160:42–48. doi: 10.1016/j.envpol.2011.08.052. PubMed DOI
Turner A. Holmes L. A. Environ. Chem. 2015;12:600. doi: 10.1071/EN14143. DOI
Brennecke D. Duarte B. Paiva F. Caçador I. Canning-Clode J. Estuarine, Coastal Shelf Sci. 2016;178:189–195. doi: 10.1016/j.ecss.2015.12.003. DOI
Pfeiffer F. Fischer E. K. Front. Environ. Sci. 2020;8 doi: 10.3389/fenvs.2020.572424. DOI
Tuuri E. M. Gascooke J. R. Leterme S. C. Sci. Total Environ. 2024;947:174279. doi: 10.1016/j.scitotenv.2024.174279. PubMed DOI
Cole M. Webb H. Lindeque P. K. Fileman E. S. Halsband C. Galloway T. S. Sci. Rep. 2014;4:4528. doi: 10.1038/srep04528. PubMed DOI PMC
Pořízka P. Klus J. Mašek J. Rajnoha M. Prochazka D. Modlitbová P. Novotný J. Burget R. Novotný K. Kaiser J. Sci. Rep. 2017;7:3160. doi: 10.1038/s41598-017-03426-0. PubMed DOI PMC
Luo X. Zhang Y. Kang S. Chen R. Gao T. Allen S. J. Hazard. Mater. 2025;488:137509. doi: 10.1016/j.jhazmat.2025.137509. PubMed DOI
Premarathna K. S. D. Rajapaksha A. U. Vithanage M. Trends Environ. Anal. Chem. 2025;45:e00256. doi: 10.1016/j.teac.2024.e00256. DOI
Bolea-Fernandez E. Rua-Ibarz A. Velimirovic M. Tirez K. Vanhaecke F. J. Anal. At. Spectrom. 2020;35:455–460. doi: 10.1039/C9JA00379G. DOI