The defense and signaling role of NADPH oxidases in eukaryotic cells : Review
Language English Country Austria Media print-electronic
Document type Journal Article, Review
Grant support
P 26713
Austrian Science Fund FWF - Austria
R01 GM098629
NIGMS NIH HHS - United States
CZ 10/2014
Österreichische Austauschdienst
P26713
Österreichische Forschungsförderungsgesellschaft
PubMed
30084091
PubMed Central
PMC6132560
DOI
10.1007/s10354-018-0640-4
PII: 10.1007/s10354-018-0640-4
Knihovny.cz E-resources
- Keywords
- Actin cytoskeleton, Chronic granulomatous disease, Nox enzymes, Reactive oxygen species, Saccharomyces cerevisiae,
- MeSH
- Eukaryotic Cells * MeSH
- Humans MeSH
- NADPH Oxidase 2 MeSH
- NADPH Oxidase 4 MeSH
- NADPH Oxidases * physiology MeSH
- Reactive Oxygen Species MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- CYBB protein, human MeSH Browser
- NADPH Oxidase 2 MeSH
- NADPH Oxidase 4 MeSH
- NADPH Oxidases * MeSH
- NOX4 protein, human MeSH Browser
- Reactive Oxygen Species MeSH
This short review article summarizes what is known clinically and biochemically about the seven human NADPH oxidases. Emphasis is put on the connection between mutations in the catalytic and regulatory subunits of Nox2, the phagocyte defense enzyme, with syndromes like chronic granulomatous disease, as well as a number of chronic inflammatory diseases. These arise paradoxically from a lack of reactive oxygen species production needed as second messengers for immune regulation. Both Nox2 and the six other human NADPH oxidases display signaling functions in addition to the functions of these enzymes in specialized biochemical reactions, for instance, synthesis of the hormone thyroxine. NADPH oxidases are also needed by Saccharomyces cerevisiae cells for the regulation of the actin cytoskeleton in times of stress or developmental changes, such as pseudohyphae formation. The article shows that in certain cancer cells Nox4 is also involved in the re-structuring of the actin cytoskeleton, which is required for cell mobility and therefore for metastasis.
In diesem kurzen Übersichtsbeitrag fassen wir den klinischen und biochemischen Wissensstand zu den sieben menschlichen NADPH-Oxidasen zusammen. Ein Schwerpunkt liegt dabei auf dem Zusammenhang zwischen Mutationen in den katalytischen und regulatorischen Untereinheiten von Nox2 – der NADPH-Oxidase der Phagozyten mit Abwehrfunktion – und Syndromen wie der septischen Granulomatose, aber auch einer Reihe von chronisch-entzündlichen Erkrankungen. Hervorgerufen werden diese durch einen Mangel an reaktiven Sauerstoffspezies, welche als Produkte der NADPH-Oxidase-Reaktion für die Immunregulation notwendig sind. Sowohl Nox2 als auch die anderen sechs menschlichen NADPH-Oxidasen haben neben ihren Funktionen in spezialisierten biochemischen Reaktionen (Beispiel: Thyroxinsynthese) auch eine Funktion in der Signaltransduktion. In der Hefe Saccharomyces cerevisiae wird die NADPH-Oxidase Yno1 als Signalgeber für die Restrukturierung des Aktinzytoskeletts gebraucht, z. B. unter Stress oder bei der Bildung von Pseudohyphen. In bestimmten Tumorzellen ist die NADPH-Oxidase Nox4 ebenfalls an der Restrukturierung des Aktinzytoskeletts beteiligt – eine Voraussetzung für die Zellmobilität und damit auch für die Metastasierung dieser Tumoren.
Department of Biological Sciences University at Buffalo The State University of New York Buffalo USA
Department of Bioscienes University of Salzburg Salzburg Austria
Laboratory of Cell Reproduction Institute of Microbiology of AS CR v v i Prague Czech Republic
See more in PubMed
Mishin V, Heck DE, Laskin DL, Laskin JD. Human recombinant cytochrome P450 enzymes display distinct hydrogen peroxide generating activities during substrate independent NADPH oxidase reactions. Toxicol Sci. 2014;141(2):344–352. doi: 10.1093/toxsci/kfu133. PubMed DOI PMC
Breitenbach M, Rinnerthaler M, Hartl J, Stincone A, Vowinckel J, Breitenbach-Koller H, et al. Mitochondria in ageing: there is metabolism beyond the ROS. Fems Yeast Res. 2014;14(1):198–212. doi: 10.1111/1567-1364.12134. PubMed DOI
Laurentino MR. Methemoglobin measure in adult patients with sickle-cell anemia: influence of hydroxyurea therapy. J Bras Patol Med Lab. 2014;50(3):184–188. doi: 10.5935/1676-2444.20140013. DOI
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry. 1998;37(16):5633–5642. doi: 10.1021/bi973035t. PubMed DOI
Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998;273(25):15366–15372. doi: 10.1074/jbc.273.25.15366. PubMed DOI
Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, Klinger H, et al. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci U S A. 2012;109(22):8658–8663. doi: 10.1073/pnas.1201629109. PubMed DOI PMC
Hajjar C, Cherrier MV, Mirandela GD, Petit-Hartlein I, Stasia MJ, Fontecilla-Camps JC, et al. The NOX family of proteins is also present in bacteria. MBio. 2017;8(6):e01487–17. doi: 10.1128/mBio.01487-17. PubMed DOI PMC
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI
Magnani F, Nenci S, Millana Fananas E, Ceccon M, Romero E, Fraaije MW, et al. Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A. 2017;114(26):6764–6769. PubMed PMC
Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, et al. Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature. 1986;322(6074):32–38. doi: 10.1038/322032a0. PubMed DOI
Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA. The glycoprotein encoded by the X‑linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature. 1987;327(6124):717–720. doi: 10.1038/327717a0. PubMed DOI
Thomas DC. The phagocyte respiratory burst: historical perspectives and recent advances. Immunol Lett. 2017;192:88–96. doi: 10.1016/j.imlet.2017.08.016. PubMed DOI
Hopkins RZ. Hydrogen peroxide in biology and medicine: an overview. React Oxyg Species. 2017;3(7):26–37.
Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Immunol. 2014;193(11):5359–5362. PubMed
Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X‑irradiation—a mechanism in common. Science. 1954;119(3097):623–626. doi: 10.1126/science.119.3097.623. PubMed DOI
McCord JM, Fridovic I. Superoxide dismutase an enzymic function for erythrocuprein (Hemocuprein) J Biol Chem. 1969;244(22):6049–6055. PubMed
Sbarra AJ, Karnovsky ML. Biochemical basis of phagocytosis .1. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959;234(6):1355–1362. PubMed
Pluddemann A, Mukhopadhyay S, Gordon S. The interaction of macrophage receptors with bacterial ligands. Expert Rev Mol Med. 2006;8(28):1–25. doi: 10.1017/S1462399406000159. PubMed DOI
Aung-Htut MT, Ayer A, Breitenbach M, Dawes IW. Oxidative stresses and ageing. Subcell Biochem. 2012;57:13–54. doi: 10.1007/978-94-007-2561-4_2. PubMed DOI
Xaus J, Comalada M, Valledor AF, Cardo M, Herrero C, Soler C, et al. Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology. 2001;204(5):543–550. doi: 10.1078/0171-2985-00091. PubMed DOI
El-Benna J, Dang PMC, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med. 2009;41(4):217–225. doi: 10.3858/emm.2009.41.4.058. PubMed DOI PMC
Cotugno N, Finocchi A, Cagigi A, Di Matteo G, Chiriaco M, Di Cesare S, et al. Defective B‑cell proliferation and maintenance of long-term memory in patients with chronic granulomatous disease. J Allergy Clin Immun. 2015;135(3):753–761. doi: 10.1016/j.jaci.2014.07.012. PubMed DOI
Holmdahl R, Sareila O, Olsson LM, Backdahl L, Wing K. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunol Rev. 2016;269(1):228–247. doi: 10.1111/imr.12378. PubMed DOI
Campbell AM, Kashgarian M, Shlomchik MJ. NADPH Oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med. 2012;4(157):157r–a141. doi: 10.1126/scitranslmed.3004801. PubMed DOI PMC
Alarcon-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno-Estrada A, Sanchez-Rodriguez E, et al. Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol. 2016;68(4):932–943. doi: 10.1002/art.39504. PubMed DOI PMC
Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet. 2011;44(2):187–192. doi: 10.1038/ng.1017. PubMed DOI PMC
de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–261. doi: 10.1038/ng.3760. PubMed DOI PMC
Cheng N, He R, Tian J, Dinauer MC, Ye RD. A critical role of protein kinase C delta activation loop phosphorylation in formyl-methionyl-leucyl-phenylalanine-induced phosphorylation of p47(phox) and rapid activation of nicotinamide adenine dinucleotide phosphate oxidase. J Immunol. 2007;179(11):7720–7728. doi: 10.4049/jimmunol.179.11.7720. PubMed DOI
Futosi K, Fodor S, Mocsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17(3):638–650. doi: 10.1016/j.intimp.2013.06.034. PubMed DOI PMC
Silva MT, Correia-Neves M. Neutrophils and macrophages: the main partners of phagocyte cell systems. Front Immunol. 2012;3:174. doi: 10.3389/fimmu.2012.00174. PubMed DOI PMC
McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death. 2014;7:15–23. doi: 10.4137/JCD.S11038. PubMed DOI PMC
Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Valdez PA, et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature. 2014;509(7499):235–239. doi: 10.1038/nature13152. PubMed DOI
Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, et al. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science. 2000;287(5450):138–142. doi: 10.1126/science.287.5450.138. PubMed DOI
Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401(6748):79–82. doi: 10.1038/43459. PubMed DOI
Kikuchi H, Hikage M, Miyashita H, Fukumoto M. NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene. 2000;254(1–2):237–243. doi: 10.1016/S0378-1119(00)00258-4. PubMed DOI
Banfi B, Clark RA, Steger K, Krause KH. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem. 2003;278(6):3510–3513. doi: 10.1074/jbc.C200613200. PubMed DOI
Shrestha P, Yun JH, Ko YJ, Kim M, Bae YS, Lee W. C-terminal tail of NADPH oxidase organizer 1 (Noxo1) mediates interaction with NADPH oxidase activator (Noxal) in the NOX1 complex. Biochem Bioph Res Co. 2017;490(3):594–600. doi: 10.1016/j.bbrc.2017.06.083. PubMed DOI
Harper RW, Xu CH, Soucek K, Setiadi H, Eiserich JP. A reappraisal of the genomic organization of human Nox1 and its splice variants. Arch Biochem Biophys. 2005;435(2):323–330. doi: 10.1016/j.abb.2004.12.021. PubMed DOI
Arakawa N, Katsuyama M, Matsuno K, Urao N, Tabuchi Y, Okigaki M, et al. Novel transcripts of Nox1 are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells. Biochem J. 2006;398:303–310. doi: 10.1042/BJ20060300. PubMed DOI PMC
Kodama R, Kato M, Furuta S, Ueno S, Zhang Y, Matsuno K, et al. ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cells. 2013;18(1):32–41. doi: 10.1111/gtc.12015. PubMed DOI
Streeter J, Schickling BM, Jiang S, Stanic B, Thiel WH, Gakhar L, et al. Phosphorylation of Nox1 regulates association with NoxA1 activation domain. Circ Res. 2014;115(11):911–918. doi: 10.1161/CIRCRESAHA.115.304267. PubMed DOI PMC
Bertram K, Valcu CM, Weitnauer M, Linne U, Gorlach A. NOX1 supports the metabolic remodeling of hepG2 cells. PLoS ONE. 2015;10(3):e0122002. doi: 10.1371/journal.pone.0122002. PubMed DOI PMC
Kato M, Marumo M, Nakayama J, Matsumoto M, Yabe-Nishimura C, Kamata T. The ROS-generating oxidase Nox1 is required for epithelial restitution following colitis. Exp Anim. 2016;65(3):197–205. doi: 10.1538/expanim.15-0127. PubMed DOI PMC
Kwon J, Wang A, Burke DJ, Boudreau HE, Lekstrom KJ, Korzeniowska A, et al. Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radic Biol Med. 2016;96:99–115. doi: 10.1016/j.freeradbiomed.2016.04.009. PubMed DOI PMC
Schwerd T, Bryant RV, Pandey S, Capitani M, Meran L, Cazier JB, et al. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol. 2017;11:562–574. doi: 10.1038/mi.2017.74. PubMed DOI PMC
Wang HP, Wang X, Gong LF, Chen WJ, Hao Z, Feng SW, et al. Nox1 promotes colon cancer cell metastasis via activation of the ADAM17 pathway. Eur. Rev. Med. Pharmacol. 2016;20(21):4474–4481. PubMed
Dickson BJ, Gatie MI, Spice DM, Kelly GM. NOX1 and NOX4 are required for the differentiation of mouse F9 cells into extraembryonic endoderm. PLoS ONE. 2017;12(2):e0170812. doi: 10.1371/journal.pone.0170812. PubMed DOI PMC
Cheng GJ, Cao ZH, Xu XX, Van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene. 2001;269(1–2):131–140. doi: 10.1016/S0378-1119(01)00449-8. PubMed DOI
Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279(44):46065–46072. doi: 10.1074/jbc.M403046200. PubMed DOI
Lavinsky J, Crow AL, Pan C, Wang JM, Aaron KA, Ho MK, et al. Genome-wide association study identifies Nox3 as a critical gene for susceptibility to noise-induced hearing loss. Plos Genet. 2015;11(4):e1005094. doi: 10.1371/journal.pgen.1005094. PubMed DOI PMC
Morimoto H, Kanatsu-Shinohara M, Shinohara T. ROS-generating oxidase Nox3 regulates the self-renewal of mouse spermatogonial stem cells. Biol Reprod. 2015;92(6):Article 147, 1‑10. doi: 10.1095/biolreprod.114.127647. PubMed DOI
Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem. 2005;280(24):23328–23339. doi: 10.1074/jbc.M414548200. PubMed DOI
Cheng G, Ritsick D, Lambeth JD. Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem. 2004;279(33):34250–34255. doi: 10.1074/jbc.M400660200. PubMed DOI
Accetta R, Damiano S, Morano A, Mondola P, Paterno R, Avvedimento EV, et al. Reactive oxygen species derived from NOX3 and NOX5 drive differentiation of human oligodendrocytes. Front Cell Neurosci. 2016;10:146. doi: 10.3389/fncel.2016.00146. PubMed DOI PMC
Geiszt M, Kopp JB, Varnai P, Leto TL. Identification of Renox, an NAD(P)H oxidase in kidney. P Natl Acad Sci Usa. 2000;97(14):8010–8014. doi: 10.1073/pnas.130135897. PubMed DOI PMC
Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, et al. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem. 2001;276(2):1417–1423. doi: 10.1074/jbc.M007597200. PubMed DOI
Kang XL, Wei XX, Jiang L, Niu C, Zhang JY, Chen SF, et al. Nox2 and Nox4 regulate self-renewal of murine induced-pluripotent stem cells. IUBMB Life. 2016;68(12):963–970. doi: 10.1002/iub.1574. PubMed DOI
Guo SH, Chen XP. The human Nox4: gene, structure, physiological function and pathological significance. J Drug Target. 2015;23(10):888–896. doi: 10.3109/1061186X.2015.1036276. PubMed DOI
Takac I, Schroder K, Zhang LL, Lardy B, Anilkumar N, Lambeth JD, et al. The E‑loop is involved in hydrogen peroxide formation by the NADPH oxidase nox4. J Biol Chem. 2011;286(15):13304–13313. doi: 10.1074/jbc.M110.192138. PubMed DOI PMC
Laurindo FR, Araujo TL, Abrahao TB. Nox NADPH oxidases and the endoplasmic reticulum. Antioxid Redox Signal. 2014;20(17):2755–2775. doi: 10.1089/ars.2013.5605. PubMed DOI PMC
Anilkumar N, Jose GS, Sawyer I, Santos CXC, Sand C, Brewer AC, et al. A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells. Arterioscler. Thromb. Vasc. Biol. 2013;33(4):e104–e112. doi: 10.1161/ATVBAHA.112.300956. PubMed DOI
Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, et al. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells. 2005;10(12):1139–1151. doi: 10.1111/j.1365-2443.2005.00907.x. PubMed DOI
Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. P Natl Acad Sci Usa. 2009;106(34):14385–14390. doi: 10.1073/pnas.0906805106. PubMed DOI PMC
Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL. Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal. 2005;7(3–4):308–317. doi: 10.1089/ars.2005.7.308. PubMed DOI
Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2004;24(4):677–683. doi: 10.1161/01.ATV.0000112024.13727.2c. PubMed DOI
Goyal P, Weissmann N, Rose F, Grimminger F, Schafers HJ, Seeger W, et al. Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells. Biochem. Biophys. Res. Commun. 2005;329(1):32–39. doi: 10.1016/j.bbrc.2005.01.089. PubMed DOI
Graham KA, Kulawiec M, Owens KM, Li XR, Desouki MM, Chandra D, et al. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther. 2010;10(3):223–231. doi: 10.4161/cbt.10.3.12207. PubMed DOI PMC
Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H‑Ras-induced DNA damage and subsequent senescence. Oncogene. 2012;31(9):1117–1129. doi: 10.1038/onc.2011.327. PubMed DOI PMC
Bedard K, Jaquet V, Krause KHNOX. from basic biology to signaling and disease. Free. Radic. Biol. Med. 2012;52(4):725–734. doi: 10.1016/j.freeradbiomed.2011.11.023. PubMed DOI
Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, et al. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001;276(40):37594–37601. doi: 10.1074/jbc.M103034200. PubMed DOI
Tirone F, Cox JA. NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. Febs Lett. 2007;581(6):1202–1208. doi: 10.1016/j.febslet.2007.02.047. PubMed DOI
Fulton DJR. Nox5 and the regulation of cellular function. Antioxid. Redox Signal. 2009;11(10):2443–2452. doi: 10.1089/ars.2009.2587. PubMed DOI PMC
Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid. Redox Signal. 2011;14(3):367–381. doi: 10.1089/ars.2010.3186. PubMed DOI
Musset B, Clark RA, DeCoursey TE, Petheo GL, Geiszt M, Chen Y, et al. NOX5 in human spermatozoa: expression, function, and regulation. J Biol Chem. 2012;287(12):9376–9388. doi: 10.1074/jbc.M111.314955. PubMed DOI PMC
Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase—Evolution of an eukaryotic operon equivalent. J Biol Chem. 2006;281(27):18269–18272. doi: 10.1074/jbc.C600095200. PubMed DOI
Park SM, Chatterjee VK. Genetics of congenital hypothyroidism. J Med Genet. 2005;42(5):379–389. doi: 10.1136/jmg.2004.024158. PubMed DOI PMC
Vigone MC, Fugazzola L, Zamproni I, Passoni A, Di Candia S, Chiumello G, et al. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum Mutat. 2005;26(4):395. doi: 10.1002/humu.9372. PubMed DOI
Hill T, Xu CH, Harper RW. IFN gamma mediates DUOX2 expression via a STAT-independent signaling pathway. Biochem. Biophys. Res. Commun. 2010;395(2):270–274. doi: 10.1016/j.bbrc.2010.04.004. PubMed DOI PMC
Salmeen A, Park BO, Meyer T. The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway. Oncogene. 2010;29(31):4473–4484. doi: 10.1038/onc.2010.200. PubMed DOI PMC
Heppner DE, Hristova M, Dustin CM, Danyal K, Habibovic A, van der Vliet A. The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J Biol Chem. 2016;291(44):23282–23293. doi: 10.1074/jbc.M116.749028. PubMed DOI PMC
Ameziane-El-Hassani R, Talbot M, Dos SMCD, Al Ghuzlan A, Hartl D, Bidart JM, et al. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. P Natl Acad Sci Usa. 2015;112(16):5051–5056. doi: 10.1073/pnas.1420707112. PubMed DOI PMC
Tatchell K, Robinson LC, Breitenbach M. Ras2 of saccharomyces-cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. P Natl Acad Sci USA. 1985;82(11):3785–3789. doi: 10.1073/pnas.82.11.3785. PubMed DOI PMC
Heeren G, Jarolim S, Laun P, Rinnerthaler M, Stolze K, Perrone GG, et al. The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. Fems Yeast Res. 2004;5(2):157–167. doi: 10.1016/j.femsyr.2004.05.008. PubMed DOI
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a) Cell. 1997;88(5):593–602. doi: 10.1016/S0092-8674(00)81902-9. PubMed DOI
Breitenbach M, Weber M, Rinnerthaler M, Karl T, Breitenbach-Koller L. Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules. 2015;5(2):318–342. doi: 10.3390/biom5020318. PubMed DOI PMC
Takemoto D, Tanaka A, Scott B. NADPH oxidases in fungi: Diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol. 2007;44(11):1065–1076. doi: 10.1016/j.fgb.2007.04.011. PubMed DOI
Lalucque H, Silar P. NADPH oxidase: an enzyme for multicellularity? Trends Microbiol. 2003;11(1):9–12. doi: 10.1016/S0966-842X(02)00007-0. PubMed DOI
Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145(4):757–767. doi: 10.1083/jcb.145.4.757. PubMed DOI PMC
Leadsham JE, Sanders G, Giannaki S, Bastow EL, Hutton R, Naeimi WR, et al. Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metab. 2013;18(2):279–286. doi: 10.1016/j.cmet.2013.07.005. PubMed DOI
Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell. 2013;152(1–2):224–235. doi: 10.1016/j.cell.2012.11.046. PubMed DOI PMC
Auer S, Rinnerthaler M, Bischof J, Streubel MK, Breitenbach-Koller H, Geisberger R, et al. The human NADPH Oxidase, Nox4, regulates cytoskeletal organization in two cancer cell lines, hepG2 and SH-SY5Y. Front Oncol. 2017 PubMed PMC
Zhang B, Liu Z, Hu X. Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol. 2013;86(2):253–266. doi: 10.1016/j.bcp.2013.05.011. PubMed DOI