Soil microarthropods alter the outcome of plant-soil feedback experiments
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30093622
PubMed Central
PMC6085370
DOI
10.1038/s41598-018-30340-w
PII: 10.1038/s41598-018-30340-w
Knihovny.cz E-resources
- MeSH
- Biomass MeSH
- Arthropods classification physiology MeSH
- Species Specificity MeSH
- Ecosystem MeSH
- Feedback, Psychological physiology MeSH
- Nematoda physiology MeSH
- Plant Roots microbiology parasitology physiology MeSH
- Mycorrhizae physiology MeSH
- Oligochaeta physiology MeSH
- Phleum microbiology parasitology physiology MeSH
- Poa microbiology parasitology physiology MeSH
- Soil parasitology MeSH
- Soil Microbiology * MeSH
- Mites physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil MeSH
Plant-soil feedback (PSF) effects are studied as plant growth responses to soil previously conditioned by another plant. These studies usually exclude effects of soil fauna, such as nematodes, soil arthropods, and earthworms, although these organisms are known to influence plant performance. Here, we aimed to explore effects of a model microarthropod community on PSFs. We performed a PSF experiment in microcosms with two plant species, Phleum pratense and Poa pratensis. We added a model microarthropod community consisting of three fungivorous springtail species (Proisotoma minuta, Folsomia candida, and Sinella curviseta) and a predatory mite (Hypoaspis aculeifer) to half of the microcosms. We measured seedling establishment and plant biomass, nematode and microbial community composition, microbial biomass, and mycorrhizal colonization of roots. Microarthropods caused changes in the composition of nematode and microbial communities. Their effect was particularly strong in Phleum plants where they altered the composition of bacterial communities. Microarthropods also generally influenced plant performance, and their effects depended on previous soil conditioning and the identity of plant species. Microarthropods did not affect soil microbial biomass and mycorrhizal colonization of roots. We conclude that the role of soil microarthropods should be considered in future PSF experiments, especially as their effects are plant species-specific.
Friedrich Schiller University of Jena Institute of Ecology Dornburger Str 159 07743 Jena Germany
Institute of Biology Leipzig University Deutscher Platz 5e 04103 Leipzig Germany
Institute of Botany Czech Academy of Sciences v v i Zámek 1 252 43 Průhonice Czech Republic
See more in PubMed
Bever JD. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. 2003;157:465–473. doi: 10.1046/j.1469-8137.2003.00714.x. PubMed DOI
van der Putten WH, et al. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 2013;101:265–276. doi: 10.1111/1365-2745.12054. DOI
Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 1997;85:561–573. doi: 10.2307/2960528. DOI
Ehrenfeld JG, Ravit B, Elgersma K. Feedback in the plant-soil system. Annu. Rev. Environ. Resour. 2005;30:75–115. doi: 10.1146/annurev.energy.30.050504.144212. DOI
Brinkman EP, V der Putten WH, Bakker EJ, Verhoeven KJF. Plant-soil feedback: Experimental approaches, statistical analyses and ecological interpretations. J. Ecol. 2010;98:1063–1073. doi: 10.1111/j.1365-2745.2010.01695.x. DOI
Bever J. Feeback between plants and their soil communities in an old field community. Ecology. 1994;75:1965–1977. doi: 10.2307/1941601. DOI
Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417:67–70. doi: 10.1038/417067a. PubMed DOI
Hawkes CV, Kivlin SN, Du J, Eviner VT. The temporal development and additivity of plant-soil feedback in perennial grasses. Plant Soil. 2013;369:141–150. doi: 10.1007/s11104-012-1557-0. DOI
Dostálek T, Münzbergová Z, Kladivová A, Macel M. Plant–soil feedback in native vs. invasive populations of a range expanding plant. Plant Soil. 2016;399:209–220. doi: 10.1007/s11104-015-2688-x. DOI
de Rooij-van der Goes PCEM, van Dijk C, van der Putten WH, Jungerius PD. Effects of sand movement by wind on nematodes and soil-borne fungi in coastal foredunes. J. Coast. Conserv. 1997;3:133–142. doi: 10.1007/BF02905239. DOI
Bonkowski M, Villenave C, Griffiths B. Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil. 2009;321:213–233. doi: 10.1007/s11104-009-0013-2. DOI
Wardle Da, et al. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI
Klironomos JN, Ursic M. Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biol. Fertil. Soils. 1998;26:250–253. doi: 10.1007/s003740050375. DOI
Gange A. Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol. Evol. 2000;15:369–372. doi: 10.1016/S0169-5347(00)01940-6. PubMed DOI
Sabatini MA, Innocenti G. Effects of collembola on plant-pathogenic fungus interactions in simple experimental systems. Biol. Fertil. Soils. 2001;33:62–66. doi: 10.1007/s003740000290. DOI
Schreiner RP, Bethlenfalvay GJ. Crop residue and Collembola interact to determine the growth of mycorrhizal pea plants. Biol. Fertil. Soils. 2003;39:1–8. doi: 10.1007/s00374-003-0672-8. DOI
Maboreke HR, et al. Multitrophic interactions in the rhizosphere of a temperate forest tree affect plant carbon flow into the belowground food web. Soil Biol. Biochem. 2017;115:526–536. doi: 10.1016/j.soilbio.2017.09.002. DOI
Kuzyakov Y, Xu X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 2013;198:656–669. doi: 10.1111/nph.12235. PubMed DOI
Maire N, Borcard D, Laczkó E, Matthey W. Organic matter cycling in grassland soils of the Swiss Jura mountains: Biodiversity and strategies of the living communities. Soil Biol. Biochem. 1999;31:1281–1293. doi: 10.1016/S0038-0717(99)00043-7. DOI
Filser J. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia (Jena). 2002;46:234–245.
Ngosong C, Gabriel E, Ruess L. Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia - J. Soil Ecol. 2014;57:171–179. doi: 10.1016/j.pedobi.2014.03.002. DOI
Setala H, Huhta V. Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor. Ecology. 1991;72:665–671. doi: 10.2307/2937206. DOI
Bradford MA, et al. Impacts of soil faunal community composition on model grassland ecosystems. Science (80-.). 2002;298:615–618. doi: 10.1126/science.1075805. PubMed DOI
De Deyn GB, et al. Soil invertebrate fauna enhances grassland succession and diversity. Nature. 2003;422:711–713. doi: 10.1038/nature01548. PubMed DOI
Eisenhauer N, et al. Impact of above- and below-ground invertebrates on temporal and spatial stability of grassland of different diversity. J. Ecol. 2011;99:572–582.
Cortois, R., Schröder-Georgi, T., Weigelt, A., van der Putten, W. H. & De Deyn, G. B. Plant-soil feedbacks: role of plant functional group and plant traits. J. Ecol. (2016).
Münzbergová Z, Šurinová M. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback. Ecosphere. 2015;6:234. doi: 10.1890/ES15-00206.1. DOI
Yang Q, et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol. Biochem. 2013;65:78–85. doi: 10.1016/j.soilbio.2013.05.004. DOI
Agrios, G. N. Plant pathology. (Academic Press, 2005).
Zelmer CD, Cuthbertson L, Currah RS. Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience. 1996;37:439–448. doi: 10.1007/BF02461001. DOI
McKendrick SL, Leake JR, Taylor DL, Read DJ. Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol. 2000;145:523–537. doi: 10.1046/j.1469-8137.2000.00603.x. PubMed DOI
Westover KM, Kennedy ANNC, Kelley SE. Patterns of Rhizosphere Microbial Community Structure Associated with Co-Occurring Plant Species. J. Ecol. 1997;85:863–873. doi: 10.2307/2960607. DOI
Marschner P, Yang C-H, Lieberei R, Crowley DE. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 2001;33:1437–1445. doi: 10.1016/S0038-0717(01)00052-9. DOI
Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417:67–70. doi: 10.1038/417067a. PubMed DOI
Vries FTD, Shade A. Controls on soil microbial community stability under climate change. Front. Microbiol. 2013;4:269. doi: 10.3389/fmicb.2013.00265. PubMed DOI PMC
Jousset A, Eisenhauer N, Materne E, Scheu S. Evolutionary history predicts the stability of cooperation in microbial communities. Nat. Commun. 2013;4:2573. doi: 10.1038/ncomms3573. PubMed DOI
Bongers T, Bongers M. Functional diversity of nematodes. Appl. Soil Ecol. 1998;10:239–251. doi: 10.1016/S0929-1393(98)00123-1. DOI
Griffiths BS, Bonkowski M, Dobson G, Caul S. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia (Jena). 1999;43:297–304.
Bonkowski M, Cheng WX, Griffiths BS, Alphei G, Scheu S. Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur. J. Soil Biol. 2000;36:135–147. doi: 10.1016/S1164-5563(00)01059-1. DOI
Endlweber K, Ruess L, Scheu S. Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol. Biochem. 2009;41:1151–1154. doi: 10.1016/j.soilbio.2009.02.022. DOI
Mitschunas N, Wagner M, Filser J. Evidence for a positive influence of fungivorous soil invertebrates on the seed bank persistence of grassland species. J. Ecol. 2006;94:791–800. doi: 10.1111/j.1365-2745.2006.01146.x. DOI
Mitschunas N, Wagner M, Filser J. Increased field emergence of seedlings at high densities of fungivorous soil mesofauna. J. Torrey Bot. Soc. 2008;135:272–280. doi: 10.3159/08-RA-022.1. DOI
Nietschke L, Burfeindt I, Seupt A, Filser J. Collembola and seed germination: relevance of substrate quality and evidence for seed attack. Soil Org. 2011;83:451–462.
Glimskar A, Ericsson T. Relative nitrogen limitation at steady-state nutrition as a determinant of plasticity in five grassland plant species. Ann. Bot. 1999;84:413–420. doi: 10.1006/anbo.1999.0929. DOI
Müller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 2000;3:115–127. doi: 10.1078/1433-8319-00007. DOI
Cambui CA, et al. Patterns of plant biomass partitioning depend on Nitrogen source. PLoS One. 2011;6:1–7. doi: 10.1371/journal.pone.0019211. PubMed DOI PMC
Heckmann LH, Ruf A, Nienstedt KM, Krogh PH. Reproductive performance of the generalist predator Hypoaspis aculeifer (Acari: Gamasida) when foraging on different invertebrate prey. Appl. Soil Ecol. 2007;36:130–135. doi: 10.1016/j.apsoil.2007.01.002. DOI
Rusek J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 1998;7:1207–1219. doi: 10.1023/A:1008887817883. DOI
Hopkin, S. P. Biology of the Springtails (Insecta: Collembola). (Oxford University Press, 1997).
Sabais ACW, Scheu S, Eisenhauer N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecologica. 2011;37:195–202. doi: 10.1016/j.actao.2011.02.002. DOI
Thakur MP, et al. Cascading effects of belowground predators on plant communities are density-dependent. Ecol. Evol. 2015;5:4300–4314. doi: 10.1002/ece3.1597. PubMed DOI PMC
Kulmatiski A, Beard KH, Stevens JR, Cobbold SM. Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. 2008;11:980–92. doi: 10.1111/j.1461-0248.2008.01209.x. PubMed DOI
Roscher C, Schumacher J, Baade J. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 2004;121:107–121. doi: 10.1078/1439-1791-00216. DOI
Cahill, J. F. et al. No silver bullet: Different soil handling techniques are useful for different research questions, exhibit differential type I and II error rates, and are sensitive to sampling intensity. New Phytol. 11–14 (2016). PubMed
Eisenhauer N, et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol. Biochem. 2009;41:561–567. doi: 10.1016/j.soilbio.2008.12.017. DOI
Eisenhauer N, Sabais ACW, Scheu S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 2011;43:1697–1704. doi: 10.1016/j.soilbio.2011.04.015. DOI
Sabais ACW, et al. Soil organisms shape the competition between grassland plant species. Oecologia. 2012;170:1021–1032. doi: 10.1007/s00442-012-2375-z. PubMed DOI
Eisenhauer N, Sabais ACW, Scheu S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 2011;43:1697–1704. doi: 10.1016/j.soilbio.2011.04.015. DOI
Ruess L, Chamberlain PM. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 2010;42:1898–1910. doi: 10.1016/j.soilbio.2010.07.020. DOI
Frostegård Å, Tunlid A, Bååth E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011;43:1621–1625. doi: 10.1016/j.soilbio.2010.11.021. DOI
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/y59-099. PubMed DOI
Ruess L. Studies on the nematode fauna of an acid forest soil: spatial distribution and extraction. Nematology. 1995;41:229–239. doi: 10.1163/003925995X00198. DOI
Nijs D. PM 7/119 (1) Nematode extraction. EPPO Bull. 2013;43:471–495. doi: 10.1111/epp.12077. DOI
Bongers, T. De Nematoden van Nederland. (KNNV Publishing, 1994).
Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera – an outline for soil ecologists. J. Nematol. 1993;25:315–331. PubMed PMC
Scheu S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol. Biochem. 1992;24:1–6. doi: 10.1016/0038-0717(92)90235-P. DOI
Beck T, et al. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 1997;29:1023–1032. doi: 10.1016/S0038-0717(97)00030-8. DOI
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular mycorrhizal infection in roots. New Phytologist. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x. DOI
R Development Core Team. R: A language and environment for statistical computing (2017).
Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO, (Cambridge University Press 2003).
TerBraak, C. J. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. (2012).