Post-eruptive mobility of lithium in volcanic rocks

. 2018 Aug 13 ; 9 (1) : 3228. [epub] 20180813

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30104674

Grantová podpora
SNSF 200021_155923 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) - International
SNSF 200021_166281 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) - International

Odkazy

PubMed 30104674
PubMed Central PMC6089988
DOI 10.1038/s41467-018-05688-2
PII: 10.1038/s41467-018-05688-2
Knihovny.cz E-zdroje

To reflect magmatic conditions, volcanic rocks must retain their compositions through eruption and post-eruptive cooling. Mostly, this is the case. However, welded ignimbrites from the Yellowstone-Snake River Plain magmatic province reveal systematic modification of the lithium (Li) inventory by post-eruptive processes. Here we show that phenocrysts from slowly cooled microcrystalline ignimbrite interiors consistently have significantly more Li than their rapidly quenched, glassy, counterparts. The strong association with host lithology and the invariance of other trace elements indicate that Li remains mobile long after eruption and readily passes into phenocrysts via diffusion as groundmass crystallisation increases the Li contents of the last remaining melts. Li isotopic measurements reveal that this diffusion during cooling combined with efficient degassing on the surface may significantly affect the Li inventory and isotopic compositions of volcanic rocks. Utilisation of Li for petrogenetic studies is therefore crucially dependent on the ability to 'see through' such post-eruptive processes.

Zobrazit více v PubMed

Edmonds M, Wallace PJ. Volatiles and exsolved vapor in volcanic systems. Elements. 2017;13:29–34. doi: 10.2113/gselements.13.1.29. DOI

Plank T. The chemical composition of subducting sediments. Treat. Geochem. 2014;2:607–626. doi: 10.1016/B978-0-08-095975-7.00319-3. DOI

Moriguti T, Nakamura E. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet. Sci. Lett. 1998;163:167–174. doi: 10.1016/S0012-821X(98)00184-8. DOI

Elliott T, Thomas A, Jeffcoate A, Niu Y. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature. 2006;443:565–568. doi: 10.1038/nature05144. PubMed DOI

Magna T, Wiechert U, Grove TL, Halliday AN. Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet. Sci. Lett. 2006;250:428–443. doi: 10.1016/j.epsl.2006.08.019. DOI

Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta. 2008;72:1626–1637. doi: 10.1016/j.gca.2007.12.021. DOI

Penniston-Dorland S, Liu XM, Rudnick RL. Lithium isotope geochemistry. Rev. Mineral Geochem. 2017;82:165–217. doi: 10.2138/rmg.2017.82.6. DOI

Chan LH, Edmond JM, Thompson G, Gillis K. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 1992;108:151–160. doi: 10.1016/0012-821X(92)90067-6. DOI

Chan LH, Alt JC, Teagle DAH. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 2002;201:187–201. doi: 10.1016/S0012-821X(02)00707-0. DOI

Tomascak PB, Tera F, Helz RT, Walker RJ. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multi-collector sector ICP-MS. Geochim. Cosmochim. Acta. 1999;63:907–910. doi: 10.1016/S0016-7037(98)00318-4. DOI

Teng FZ, McDonough WF, Rudnick RL, Walker RJ, Sirbescu MLC. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am. Mineral. 2006;91:1488–1498. doi: 10.2138/am.2006.2083. DOI

Chan LH, Kastner M. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet. Sci. Lett. 2000;183:275–290. doi: 10.1016/S0012-821X(00)00275-2. DOI

Leeman WP, Tonarini S, Chan LH, Borg LE. Boron and lithium isotopic variations in a hot subduction zone–the southern Washington Cascades. Chem. Geol. 2004;212:101–124. doi: 10.1016/j.chemgeo.2004.08.010. DOI

Bebout GE, Bebout AE, Graham CM. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Earth Planet. Sci. Lett. 2007;239:284–304.

John T, et al. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat. Geosci. 2012;5:489–492. doi: 10.1038/ngeo1482. DOI

Coogan LA, Kasemann SA, Chakraborty S. Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet. Sci. Lett. 2005;240:415–424. doi: 10.1016/j.epsl.2005.09.020. DOI

Kent AJR, et al. Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington. Geology. 2007;35:231–234. doi: 10.1130/G22809A.1. DOI

Gallagher K, Elliott T. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet. Sci. Lett. 2009;278:286–296. doi: 10.1016/j.epsl.2008.12.009. DOI

Benson TR, Coble MA, Rytuba JJ, Mahood GA. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun. 2017;8:270. doi: 10.1038/s41467-017-00234-y. PubMed DOI PMC

Charlier BLA, et al. Lithium concentration gradients in feldspar and quartz record the final minutes of magma ascent in an explosive supereruption. Earth Planet. Sci. Lett. 2012;319–320:218–227. doi: 10.1016/j.epsl.2011.12.016. DOI

Branney MJ, et al. Snake River (SR)-type volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions. Bull. Volcanol. 2008;70:293–314. doi: 10.1007/s00445-007-0140-7. DOI

Ellis BS, et al. Groundmass crystallisation and cooling rates of lava-like ignimbrites: the Grey’s Landing ignimbrite, southern Idaho, USA. Bull. Volcanol. 2015;77:87. doi: 10.1007/s00445-015-0972-5. DOI

Jarvis, A., Reuter, H. I., Nelson A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database http://srtm.csi.cgiar.org (2008).

Christiansen E. Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites. Geol. Mag. 2005;142:669–681. doi: 10.1017/S0016756805001445. DOI

Bolte T, Holtz F, Almeev R, Nash BP. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise Volcanic Field, Yellowstone hotspot system. Contrib. Mineral. Petrol. 2015;169:15. doi: 10.1007/s00410-015-1112-0. DOI

Cathey HE, Nash BP. The Cougar Point Tuff: implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J. Petrol. 2004;45:27–58. doi: 10.1093/petrology/egg081. DOI

Ellis BS, et al. Rhyolitic volcanism of the central Snake River Plain: a review. Bull. Volcanol. 2013;75:745. doi: 10.1007/s00445-013-0745-y. DOI

Rowe MC, Ellis BS, Lindeberg A. Quantifying crystallization and devitrification of rhyolites via X-ray diffraction and electron microprobe analysis. Am. Mineral. 2012;97:1685–1699. doi: 10.2138/am.2012.4006. DOI

Morgan LA, McIntosh WC. Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA. Geol. Soc. Am. Bull. 2005;117:288–306. doi: 10.1130/B25519.1. DOI

Watts KE, Bindeman IN, Schmitt AK. Large-volume rhyolite genesis in caldera complexes of the Snake River Plain: insights from the Kilgore Tuff of the Heise Volcanic Field, Idaho, with comparison to Yellowstone and Bruneau–Jarbidge rhyolites. J. Petrol. 2011;52:857–890. doi: 10.1093/petrology/egr005. DOI

Ellis BS, et al. Post-caldera volcanism at the Heise volcanic field: implications for petrogenetic models. J. Petrol. 2017;58:115–136. doi: 10.1093/petrology/egx007. DOI

Christiansen, R. L. The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana. USGS Professional Paper 729-G (2001).

Rivera TA, Schmitz MD, Crowley JL, Storey M. Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA. Geology. 2014;42:643–646. doi: 10.1130/G35808.1. DOI

Wotzlaw JF, Bindeman IN, Stern RA, D’Abzac FX, Schaltegger U. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci. Rep. 2015;5:14026. doi: 10.1038/srep14026. PubMed DOI PMC

Boroughs S, Wolff JA, Ellis BS, Bonnichsen B, Larson PB. Evaluation of models for the origin of Miocene low-δ18O rhyolites of the Yellowstone/Columbia River Large Igneous Province. Earth Planet. Sci. Lett. 2012;313–314:45–55. doi: 10.1016/j.epsl.2011.10.039. DOI

Jeffcoate AB, et al. Li isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta. 2007;71:202–218. doi: 10.1016/j.gca.2006.06.1611. DOI

Ionov DA, Seitz HM. Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet. Sci. Lett. 2008;266:316–331. doi: 10.1016/j.epsl.2007.11.020. DOI

Beck P, Barratt JA, Chaussidon M, Gillet PH, Bohn M. Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas? Geochim. Cosmochim. Acta. 2004;68:2925–2933. doi: 10.1016/j.gca.2003.10.045. DOI

Kuritani T, Nakamura E. Elemental fractionation in lavas during post-eruptive degassing: evidence from trachytic lavas, Rishiri Volcano, Japan. J. Volcanol. Geoth. Res. 2006;149:124–138. doi: 10.1016/j.jvolgeores.2005.06.008. DOI

Cabato J, Altherr R, Ludwig T, Meyer HP. Li, Be, B concentrations and δ7Li values in plagioclase phenocrysts of dacites from Nea Kameni (Santorini, Greece) Contrib. Mineral. Petrol. 2013;165:1135–1154. doi: 10.1007/s00410-013-0851-z. DOI

Fortin MA, Watson EB, Stern R. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth. Earth Planet. Sci. Lett. 2017;480:15–24. doi: 10.1016/j.epsl.2017.09.042. DOI

Watson EB. Diffusive fractionation of volatiles and their isotopes during bubble growth in magmas. Contrib. Mineral. Petrol. 2017;172:61. doi: 10.1007/s00410-017-1384-7. DOI

Coogan LA. Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents. Lithos. 2011;125:711–715. doi: 10.1016/j.lithos.2011.03.016. DOI

Dohmen R, Blundy J. A predictive thermodynamic model for element partitioning between plagioclase and melt as a function of pressure, temperature and composition. Am. J. Sci. 2014;314:1319–1372. doi: 10.2475/09.2014.04. DOI

Maneta V, Baker DR, Minarik W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contrib. Mineral. Petrol. 2015;170:4. doi: 10.1007/s00410-015-1158-z. DOI

Bartels A, Behrens H, Holtz F, Schmidt BC. The effect of lithium on the viscosity of pegmatite-forming liquids. Chem. Geol. 2015;410:1–11. doi: 10.1016/j.chemgeo.2015.05.011. DOI

Troch J, et al. Rhyolite generation prior to a Yellowstone supereruption: insights from the Island Park–Mount Jackson rhyolite series. J. Petrol. 2017;58:29–52.

Richter FM, Davis AM, DePaolo DJ, Watson EB. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta. 2003;67:3905–3923. doi: 10.1016/S0016-7037(03)00174-1. DOI

Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta. 2006;70:4813–4825. doi: 10.1016/j.gca.2006.07.025. DOI

Parkinson IJ, Hammond SJ, James RH, Rogers NW. High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet. Sci. Lett. 2007;257:609–621. doi: 10.1016/j.epsl.2007.03.023. DOI

Tomascak, P. B., Magna, T. & Dohmen, R. Advances in Lithium Isotope Geochemistry (Springer, Cham, 2016).

Giletti BJ, Shanahan TM. Alkali diffusion in plagioclase feldspar. Chem. Geol. 1997;139:3–20. doi: 10.1016/S0009-2541(97)00026-0. DOI

Berlo K, et al. Geochemical precursors to volcanic activity at Mount St. Helens, USA. Science. 2004;306:1167–1169. doi: 10.1126/science.1103869. PubMed DOI

Genareau K, Clarke AB, Hervig RL. New insight into explosive volcanic eruptions: connecting crystal-scale chemical changes with conduit-scale dynamics. Geology. 2009;37:367–370. doi: 10.1130/G25561A.1. DOI

Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib. Mineral. Petrol. 2013;165:129–153. doi: 10.1007/s00410-012-0800-2. DOI

Guillong, M., Meier, D., Allan, M., Heinrich, C. & Yardley, B. in Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.) 328–333 (Mineralogical Association of Canada, Short Course 40, 2008).

Ellis BS, et al. Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: the Twin Falls eruptive centre, central Snake River Plain. Lithos. 2010;120:475–489. doi: 10.1016/j.lithos.2010.09.008. DOI

Audétat A, et al. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostand. Geoanal. Res. 2014;39:171–184. doi: 10.1111/j.1751-908X.2014.00309.x. DOI

Magna T, Wiechert U, Halliday AN. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int. J. Mass Spec. 2004;239:67–76. doi: 10.1016/j.ijms.2004.09.008. DOI

Flesch GD, Anderson AR, Jr, Svec HJ. A secondary isotopic standard for 6Li/7Li determinations. Int. J. Mass Spec. Ion. Phys. 1973;12:265–272. doi: 10.1016/0020-7381(73)80043-9. DOI

Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG. The control of lithium budgets in island arcs. Earth Planet. Sci. Lett. 2002;196:227–238. doi: 10.1016/S0012-821X(01)00614-8. DOI

Agostini S, Ryan JG, Tonarini S, Innocenti F. Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet. Sci. Lett. 2008;272:139–147. doi: 10.1016/j.epsl.2008.04.032. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...