Lithium systematics in the Krafla volcanic system: comparison between surface rhyolites and felsic cuttings from the Iceland deep drilling project -1 (IDDP-1)

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38585043

UNLABELLED: The unexpected discovery of felsic magma by the Iceland Deep Drilling Project-1 (IDDP-1) in the Krafla volcanic system (KVS) presents a unique opportunity to investigate pre-eruptive lithium (Li) dynamics and establish a more direct connection between magma reservoirs and volcanic deposits. Our study provides new insights into Li abundances and isotope compositions in bulk-rock, minerals, and groundmass glass from rhyolitic lavas at KVS, encompassing various stages of groundmass crystallisation. Additionally, we examined felsic cuttings retrieved from the IDDP-1 well, comprising crystal-poor obsidian and crystal-bearing to -rich 'felsite' particles. Groundmass glasses from surface lavas show limited variability in K/Na, indicating limited secondary hydration of the glasses and that their Li contents seem to not be affected by this post-eruptive process. Lithium inventories in groundmass glasses and minerals within lavas exhibit variations consistent with the cooling history of the deposit, resembling patterns seen in Snake River Plain ignimbrites. Lithium contents of glassy rhyolitic lavas, whether bulk-rock (avg. 27.2 ± 3.1 μg/g) or groundmass glass (average 28.4 ± 4.7 μg/g), and their bulk isotopic compositions (avg. δ7Li =+ 4.4 ± 0.2‰) overlap with those observed in IDDP-1 obsidian cuts (avg. 24.9 μg/g Li in bulk, 28.6 ± 1.5 μg/g in groundmass glass, and δ7Li = 4.5 ± 0.2‰). Glassy lavas lacking spherulites may potentially preserve pristine magmatic Li element and isotope compositions, while areas with extensive groundmass crystallisation reveal Li enrichments in phenocrysts. Plagioclases in slowly cooled parts of the deposit record a two-fold increase in Li contents compared to plagioclase found in glassy counterparts, along with evidence of open-system degassing marked by heavier bulk Li isotope compositions and lower bulk Li contents of the crystallised lava portions (avg. δ7Li = +7.2 ± 0.1‰ and 7 ± 0.8 μg/g Li) relative to bulk glassy lithologies (avg. δ7Li = +4.1 ± 0.1‰ and 28 ± 2 μg/g Li). Partition coefficients derived from IDDP-1 cuts successfully predict Li inventories in vitrophyres of rhyolites on the surface of the KVS. Lithium isotope compositions of the crystal-rich IDDP-1 cuts are significantly heavier (avg. δ7Li = +7.2 ± 0.2‰) than lavas and IDDP-1 obsidian cuts, casting doubt on the notion that the IDDP-1 rhyolitic magma could result from the melting of felsite lenses in the KVS. Lithium contents in groundmass glasses within IDDP-1 crystal-rich cuts show higher Li contents (avg. 55.1-60.7 μg/g), correlating with the higher crystal content and an increase in other incompatible elements (avg. 250 μg/g Rb) relative to obsidian cuttings (avg. 75 μg/g Rb). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00410-024-02119-y.

Zobrazit více v PubMed

Befus KS, Watkins J, Gardner JE, Richard D, Befus KM, Miller NR, Dingwell DB. Spherulites as in-situ recorders of thermal history in lava flows. Geology. 2015;43(7):647–650. doi: 10.1130/G36639.1. DOI

Bergh SG, Sigvaldason GE. Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, south Iceland. Bull Volcanol. 1991;53:597–611. doi: 10.1007/BF00493688. DOI

Bowell RJ, Lagos L, de los Hoyos CR, Declercq J, Classification and characteristics of natural lithium resources. Elements. 2020;16(4):259–264. doi: 10.2138/gselements.16.4.259. DOI

Branney MJ, Kokelaar P. A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol. 1992;54:504–520. doi: 10.1007/BF00301396. DOI

Burnard P, Harrison D. Argon isotope constraints on modification of oxygen isotopes in Iceland basalts by surficial processes. Chem Geol. 2005;216(1–2):143–156. doi: 10.1016/j.chemgeo.2004.11.001. DOI

Castro JM, Beck P, Tuffen H, Nichols AR, Dingwell DB, Martin MC. Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Min. 2008;93(11–12):1816–1822. doi: 10.2138/am.2008.2904. DOI

Chauvel C, Hémond C. Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochem Geophys Geosyst. 2000 doi: 10.1029/1999GC000002. DOI

Coogan LA. Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents. Lithos. 2011;125(1–2):711–715. doi: 10.1016/j.lithos.2011.03.016. DOI

Cortes-Calderon EA, Ellis BS, Harris C, Mark DF, Neukampf J, Wolff JA, Ulmer P, Bachmann O. Generation and field relations of low-δ18O silica-undersaturated and mildly saturated alkaline magmas: a case study from the fataga group, gran canaria. J Pet. 2022 doi: 10.1093/petrology/egac090. DOI

Donovan JJ, Tingle TN. An improved mean atomic number background correction for quantitative microanalysis. Microsc Microanal. 1996;2(1):1–7. doi: 10.1017/S1431927696210013. DOI

Donovan JJ, Allaz JM, Von Der Handt A, Seward GG, Neill O, Goemann K, Chouinard J, Carpenter PK. Quantitative WDS compositional mapping using the electron microprobe. Am Min J Earth Planet Mater. 2021;106(11):1717–1735. doi: 10.2138/am-2021-7739. DOI

Drouin V, Sigmundsson F, Ófeigsson BG, Hreinsdóttir S, Sturkell E, Einarsson P. Deformation in the northern volcanic zone of Iceland 2008–2014: an interplay of tectonic, magmatic and glacial isostatic deformation. J Geophys Res Solid Earth. 2017;122(4):3158–3178. doi: 10.1002/2016JB013206. DOI

Dufek J, Bachmann O. Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology. 2010;38(8):687–690. doi: 10.1130/G30831.1. DOI

Einarsson P. S-wave shadows in the Krafla caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull Volcanol. 1978;41:187–195. doi: 10.1007/BF02597222. DOI

Elders WA, Friðleifsson GÓ, Zierenberg RA, Pope EC, Mortensen AK, Guðmundsson Á, Lowenstern JB, Marks NE, Owens L, Bird DK, Reed M. Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano. Iceland Geology. 2011;39(3):231–234. doi: 10.1130/G31393.1. DOI

Ellis BS, Cordonnier B, Rowe MC, Szymanowski D, Bachmann O, Andrews GDM. Groundmass crystallization and cooling rates of lava-like ignimbrites: the grey’s landing ignimbrite, southern idaho, USA. Bull Volcanol. 2015;77:1–15. doi: 10.1007/s00445-015-0972-5. PubMed DOI

Ellis BS, Szymanowski D, Magna T, Neukampf J, Dohmen R, Bachmann O, Ulmer P, Guillong M. Post-eruptive mobility of lithium in volcanic rocks. Nat Commun. 2018;9(1):3228. doi: 10.1038/s41467-018-05688-2. PubMed DOI PMC

Ellis BS, Szymanowski D, Harris DM, Tollan PME, Neukampf J, Guillong M, Cortes-Calderon EA, Bachmann O. Evaluating the potential of rhyolite glass as a lithium source for brine deposits. Econ Geol. 2022;117(1):91–105. doi: 10.5382/econgeo.4866. DOI

Ellis BS, Wolff JA, Szymanowski D, Forni F, Cortes-Calderon EA, Bachmann O. Cumulate recycling in igneous systems: the volcanic record. Lithos. 2023;14:107284. doi: 10.1016/j.lithos.2023.107284. DOI

Ewart A. Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, central volcanic region, New Zealand. Min Mag. 1971;38:424–434. doi: 10.1180/minmag.1971.038.296.04. DOI

Fitton JG, Saunders AD, Kempton PD, Hardarson BS. Does depleted mantle form an intrinsic part of the Iceland plume? Geochem Geophys Geosyst. 2003 doi: 10.1029/2002GC000424. DOI

Flesch GD, Anderson AR, Jr, Svec HJ. A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys. 1973;12(3):265–272. doi: 10.1016/0020-7381(73)80043-9. DOI

Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS. The origin of a zoned ignimbrite: insights into the campanian ignimbrite magma chamber (Campi Flegrei, Italy) Earth Planet Sci Lett. 2016;449:259–271. doi: 10.1016/j.epsl.2016.06.003. DOI

Gallagher K, Elliot T. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett. 2009;278:286–296. doi: 10.1016/j.epsl.2008.12.009. DOI

Gardner JE, Befus KS, Watkins J. Compositional gradients surrounding spherulites in obsidian and their relationship to spherulite growth and lava cooling. Bull Volcanol. 2012;74:1865–1879. doi: 10.1007/s00445-012-0642-9. DOI

Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BW. Appendix A6: sills: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Min Assoc Can Short Course. 2008;40:328–333.

Hampton RL, Bindeman IN, Stern RA, Coble MA, Rooyakkers SM. A microanalytical oxygen isotopic and U-Th geochronologic investigation and modeling of rhyolite petrogenesis at the krafla central volcano. Iceland J Volcanol Geotherm Res. 2021;14:107229. doi: 10.1016/j.jvolgeores.2021.107229. DOI

Hards VL, Kempton PD, Thompson RN, Greenwood PB. The magmatic evolution of the Snaefell volcanic centre; an example of volcanism during incipient rifting in Iceland. J Volcanol Geotherm Res. 2000;99(1–4):97–121. doi: 10.1016/S0377-0273(00)00160-8. DOI

Hattori K, Muehlenbachs K. Oxygen isotope ratios of the Icelandic crust. J Geophys Res Solid Earth. 1982;87(B8):6559–6565. doi: 10.1029/JB087iB08p06559. DOI

Holycross ME, Watson EB, Richter FM, Villeneuve J. Diffusive fractionation of Li isotopes in wet, highly silicic melts. Geochem Perspect Lett. 2018;6:39–42. doi: 10.7185/geochemlet.1807. DOI

Ionov DA, Seitz HM. Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings mantle sources vs eruption histories. Earth Planet Sci Lett. 2008 doi: 10.1016/j.epsl.2007.11.020. DOI

Iveson AA, Rowe MC, Webster JD, Neil OK. Amphibole-, clinopyroxene- and plagioclase-melt partitioning of trace and economic metal in halogen-bearing rhyodacitic melts. J Petrol. 2018;59(8):1579–1604. doi: 10.1093/petrology/egy072. DOI

Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS. ID-ICP-MS LA-ICP-MS Geostand Geoanal Res. 2005;29(3):285–302. doi: 10.1111/j.1751-908X.2005.tb00901.x. DOI

Jóhannesson H, Sæmundsson K (1998) Geological map of Iceland, 1:500.000. Bedrock geology. Icelandic Institute of Natural History and Iceland Geodetic Survey, Reykjavík

Jónasson K. Rhyolite volcanism in the krafla central volcano, north-east Iceland. Bull Volcanol. 1994;56:516–528. doi: 10.1007/BF00302832. DOI

Jónasson K. Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodyn. 2007;43(1):101–117. doi: 10.1016/j.jog.2006.09.004. DOI

Lavallée Y, Wadsworth FB, Vasseur J, Russell JK, Andrews GD, Hess KU, von Aulock FW, Kendrick JE, Tuffen H, Biggin AJ, Dingwell DB. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards. Front Earth Sci. 2015;3:1–11. doi: 10.3389/feart.2015.00002. DOI

Lawver LA, Müller RD. Iceland hotspot track. Geology. 1994;22(4):311–314. doi: 10.1130/0091-7613(1994)022<0311:IHT>2.3.CO;2. DOI

Lipman PW. Chemical comparison of glassy and crystalline volcanic rocks. Geol Surv Bull. 1965;1201:1–24. doi: 10.3133/b1201D. DOI

Lubbers J, Kent AJ, de Silva S. Thermal budgets of magma storage constrained by diffusion chronometry: the Cerro Galán ignimbrite. J Pet. 2022 doi: 10.1093/petrology/egac048. DOI

Magna T, Wiechert UH, Halliday AN. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int J Mass Spectrom. 2004;239(1):67–76. doi: 10.1016/j.ijms.2004.09.008. DOI

Magna T, Wiechert U, Halliday AN. New constraints on the lithium isotope compositions of the moon and terrestrial planets. Earth Planet Sci Lett. 2006;243:336–353. doi: 10.1016/j.epsl.2006.01.005. DOI

Magna T, Wiechert U, Stuart FM, Halliday AN, Harrison D. Combined Li–He isotopes in Iceland and jan mayen basalts and constraints on the nature of the north Atlantic mantle. Geochim Cosmochim Acta. 2011;75(3):922–936. doi: 10.1016/j.gca.2010.11.007. DOI

Manley CR. Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modeling results. J Volcanol Geotherm Res. 1992;53(1–4):27–46. doi: 10.1016/0377-0273(92)90072-L. DOI

Martin E, Sigmarsson O. Thirteen million years of silicic magma production in Iceland: links between petrogenesis and tectonic settings. Lithos. 2010;116:129–144. doi: 10.1016/j.lithos.2010.01.005. DOI

Masotta M, Mollo S, Nazzari M, Tecchiato V, Scarlato P, Papale P, Bachmann O. Crystallization and partial melting of rhyolite and felsite rocks at Krafla volcano: a comparative approach based on mineral and glass chemistry of natural and experimental products. Chem Geol. 2018;483:603–618. doi: 10.1016/j.chemgeo.2018.03.031. DOI

Matthews NE, Huber C, Pyle DM, Smith VC. Timescales of magma recharge and reactivation of large silicic systems from Ti diffusion in quartz. J Pet. 2012;53(7):1385–1416. doi: 10.1093/petrology/egs020. DOI

McDonough WF, Sun SS. The composition of the earth. Chem Geol. 1995;120(3–4):223–253. doi: 10.1016/0009-2541(94)00140-4. DOI

McGarvie D. Rhyolitic volcano–ice interactions in Iceland. J Volcanol Geotherm Res. 2009;185(4):367–389. doi: 10.1016/j.jvolgeores.2008.11.019. DOI

Montanaro C, Mortensen AK, Weisenberger TB, Dingwell DB, Scheu B. Stratigraphic reconstruction of the Víti breccia at Krafla volcano (Iceland): insights into pre-eruptive conditions priming explosive eruptions in geothermal areas. Bull Volcanol. 2021;83:1–27. doi: 10.1007/s00445-021-01502-y. PubMed DOI PMC

Neukampf J, Ellis BS, Magna T, Laurent O, Bachmann O. Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: the case of the mesa falls tuff, yellowstone. Chem Geol. 2019;506:175–186. doi: 10.1016/j.chemgeo.2018.12.031. DOI

Neukampf J, Ellis BS, Laurent O, Steinmann LK, Ubide T, Oeser M, Magna T, Weyer S, Bachmann O. Time scales of syneruptive volatile loss in silicic magmas quantified by Li isotopes. Geology. 2020;49(2):125–129. doi: 10.1130/G47764.1. DOI

Neukampf J, Laurent O, Tollan P, Bouvier AS, Magna T, Ulmer P, France L, Ellis BS, Bachmann O. Degassing from magma reservoir to eruption in silicic systems: the Li elemental and isotopic record from rhyolitic melt inclusions and host quartz in a yellowstone rhyolite. Geochim Cosmochim Acta. 2022;326:56–76. doi: 10.1016/j.gca.2022.03.037. DOI

Neukampf J, Ellis BS, Magna T, Laurent O, Marrocchi Y. Partitioning and isotopic fractionation of Li between mineral phases and alkaline to calc-alkaline melts of explosive and effusive eruptions. Chem Geol. 2023;636:121628. doi: 10.1016/j.chemgeo.2023.121628. DOI

Nicholson H, Condomines M, Fitton JG, Fallick AE, Grönvold K, Rogers G. Geochemical and isotopic evidence for crustal assimilation beneath Krafla. Iceland J Petrol. 1991;32(5):1005–1020. doi: 10.1093/petrology/32.5.1005. DOI

Nielsen CH, Sigurdsson H. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Min. 1981;66(5–6):547–552.

Oi T, Odagiri T, Nomura M. Extraction of lithium from GSJ rock reference samples and determination of their lithium isotopic compositions. Anal Chim Acta. 1997;340(1–3):221–225. doi: 10.1016/S0003-2670(96)00519-3. DOI

Pálsson B, Hólmgeirsson S, Guðmundsson Á, Bóasson HÁ, Ingason K, Sverrisson H, Thórhallsson S. Drilling of the well IDDP-1. Geotherm. 2014;49:23–30. doi: 10.1016/j.geothermics.2013.08.010. DOI

Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal Atom Spec. 2011;26(12):2508–2518. doi: 10.1039/c1ja10172b. DOI

Penniston-Dorland S, Liu XM, Rudnick RL. Lithium isotope geochemistry. Rev Min Geochem. 2017;82(1):165–217. doi: 10.2138/rmg.2017.82.6. DOI

Reubi O, Müntener O. Making andesites and the continental crust: mind the step when wet. J Pet. 2022 doi: 10.1093/petrology/egac044. DOI

Richter FM, Davis AM, DePaolo DJ, Watson EB. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta. 2003;67(20):3905–3923. doi: 10.1016/S0016-7037(03)00174-1. DOI

Rooyakkers SM, Stix J, Berlo K, Barker SJ. Emplacement of unusual rhyolitic to basaltic ignimbrites during collapse of a basalt-dominated caldera: the halarauður eruption, Krafla (Iceland) GSA Bull. 2020;132(9–10):1881–1902. doi: 10.1130/B35450.1. DOI

Rooyakkers SM, Stix J, Berlo K, Petrelli M, Hampton RL, Barker SJ, Morgavi D. The origin of rhyolitic magmas at Krafla Central Volcano (Iceland) J Petrol. 2021;62(8):1–27. doi: 10.1093/petrology/egab064. DOI

Rowe MC, Ellis BS, Lindeberg A. Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis. Am Min. 2012;97(10):1685–1699. doi: 10.2138/am.2012.4006. DOI

Sæmundsson K. Outline of the geology of Iceland. Jokull. 1979;29:7–28.

Sæmundsson K. Jarðfræði Kröflukerfisins (Geology of the Krafla Volcanic System) In: Garðarson A, Einarsson A, editors. Náttúra Myvatns (Myvatn’s Nature) Hid Islenska Náttúrufræðifélag: Reykjavík; 1991. pp. 24–95.

Sæmundsson K, Pringle MS (2000) Um aldur berglaga Í kröflukerfinu On the age of rock strata in the Krafla system. In: Proc Geosci Soc Iceland Spring Meet Abstracts, Reykjavık

Sæmundsson K, Hjartarson Á, Kaldal I, Sigurgeirsson MA, Kristinsson SG, Vikingsson S (2012) Geological map of the Northern volcanic zone, Iceland, northern Part, scale 1:100,000 Iceland Geosurvey Landsvirkjun

Saubin E, Kennedy B, Tuffen H, Nichols AR, Villeneuve M, Bindeman I, Mortensen A, Schipper CI, Wadsworth FB, Watson T, Zierenberg R. Textural and geochemical window into the IDDP-1 rhyolitic melt, Krafla, Iceland, and its reaction to drilling. GSA Bull. 2021;133(9–10):1815–1830. doi: 10.1130/B35598.1. DOI

Schattel N, Portnyagin M, Golowin R, Hoernle K, Bindeman I. Contrasting conditions of rift and off-rift silicic magma origin on Iceland. Geophys Res Lett. 2014;41(16):5813–5820. doi: 10.1002/2014GL060780. DOI

Schuessler JA, Schoenberg R, Sigmarsson O. Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chem Geol. 2009;258(1–2):78–91. doi: 10.1016/j.chemgeo.2008.06.021. DOI

Schuler J, Greenfield T, White RS, Roecker SW, Brandsdóttir B, Stock JM, Tarasewicz J, Martens HR, Pugh D. Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland. J Geophys Res Solid Earth. 2015;120(10):7156–7173. doi: 10.1002/2015JB012350. DOI

Scott SW, Covell C, Júlíusson E, Valfells Á, Newson J, Hrafnkelsson B, Pálsson H, Gudjónsdóttir M. A probabilistic geologic model of the Krafla geothermal system constrained by gravimetric data. Geotherm Energy. 2019;7(1):1–30. doi: 10.1186/s40517-019-0143-6. DOI

Sigmarsson O, Condomines M, Fourcade S. A detailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petrol. 1992;112:20–34. doi: 10.1007/BF00310953. DOI

Sliwinski JT, Bachmann O, Ellis BS, Dávila-Harris P, Nelson BK, Dufek J. Eruption of shallow crystal cumulates during explosive phonolitic eruptions on Tenerife. Canary Islands J Pet. 2015;56(11):2173–2194. doi: 10.1093/petrology/egv068. DOI

Spallanzani R, Koga KT, Cichy SB, Wiedenbeck M, Schmidt BC, Oelze M, Wilke M. Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts. Contrib Mineral Petrol. 2022;177(8):74. doi: 10.1007/s00410-022-01937-2. DOI

Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lon Spec Publ. 1989;42(1):313–345. doi: 10.1144/GSL.SP.1989.042.01.19. DOI

Swanson SE. Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Min. 1977;62(9–10):966–978.

Thirlwall MF, Gee MA, Lowry D, Mattey DP, Murton BJ, Taylor RN. Low δ18O in the Icelandic mantle and its origins: evidence from reykjanes ridge and Icelandic lavas. Geochim Cosmochim Acta. 2006;70(4):993–1019. doi: 10.1016/j.gca.2005.09.008. DOI

Thomas RM, Sparks RS. Cooling of tephra during fallout from eruption columns. Bull Volcanol. 1992;54:542–553. doi: 10.1007/BF00569939. DOI

Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB. Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta. 2008;72:1626–1637. doi: 10.1016/j.gca.2007.12.021. DOI

Tomascak PB, Magna T, Dohmen R. Advances in lithium isotope geochemistry. Cham: Springer International Publishing; 2016.

Troch J, Ellis BS, Harris C, Bachmann O, Bindeman IN. Low-δ18O silicic magmas on earth: a review. Earth-Sci Rev. 2020;208:103299. doi: 10.1016/j.earscirev.2020.103299. DOI

Tuffen H, Castro JM. The emplacement of an obsidian dyke through thin ice: Hrafntinnuhryggur. Krafla Iceland J Volcanol Geotherm Res. 2009;185(4):352–366. doi: 10.1016/j.jvolgeores.2008.10.021. DOI

Tuttle OF, Bowen NL. Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem. 1958;74:153. doi: 10.1130/MEM74-p1. DOI

Verney-Carron A, Vigier N, Millot R, Hardarson BS. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland) Earth Planet Sci Lett. 2015;411:62–71. doi: 10.1016/j.epsl.2014.11.047. DOI

Vlastélic I, Staudacher T, Bachèlery P, Télouk P, Neuville D, Benbakkar M. Lithium isotope fractionation during magma degassing: constraints from silicic differentiates and natural gas condensates from Piton de la fournaise volcano (Réunion Island) Chem Geol. 2011;284(1–2):26–34. doi: 10.1016/j.chemgeo.2011.02.002. DOI

Watkins J, Manga M, Huber C, Martin M. Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles. Contrib Mineral Petrol. 2009;157:163–172. doi: 10.1007/s00410-008-0327-8. DOI

Watson EB. Diffusive fractionation of volatiles and their isotopes during bubble growth in magmas. Contrib Mineral Petrol. 2017;172:1–21. doi: 10.1007/s00410-017-1384-7. DOI

Wolff JA. On the syenite-trachyte problem. Geology. 2017;45(12):1067–1070. doi: 10.1130/G39415.1. DOI

Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma mass spectrometry. J Geostand Geoanal Res. 2007;31(4):331–343. doi: 10.1111/j.1751-908X.2007.00104.x. DOI

Zielinski RA, Lipman PW, Millard HT. Minor-element abundances in obsidian, perlite, and felsite of calc-alkalic rhyolites. Am Min. 1977;62(5–6):426–437.

Zierenberg RA, Schiffman P, Barfod GH, Lesher CE, Marks NE, Lowenstern JB, Mortensen AK, Pope EC, Bird DK, Reed MH, Friðleifsson GÓ. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland. Contrib Mineral Petrol. 2013;165:327–347. doi: 10.1016/j.chemgeo.2018.03.031. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...