Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30108066
PubMed Central
PMC6212652
DOI
10.1182/blood-2018-03-837633
PII: S0006-4971(20)60669-3
Knihovny.cz E-zdroje
- MeSH
- celková dávka radioterapie MeSH
- dospělí MeSH
- kritické orgány účinky záření MeSH
- lidé MeSH
- lymfom patologie radioterapie MeSH
- mezinárodní agentury MeSH
- nádory mediastina patologie radioterapie MeSH
- plánování radioterapie pomocí počítače MeSH
- protonová terapie * MeSH
- radiační poranění prevence a kontrola MeSH
- směrnice pro lékařskou praxi jako téma normy MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Among adult lymphoma survivors, radiation treatment techniques that increase the excess radiation dose to organs at risk (OARs) put patients at risk for increased side effects, especially late toxicities. Minimizing radiation to OARs in adults patients with Hodgkin and non-Hodgkin lymphomas involving the mediastinum is the deciding factor for the choice of treatment modality. Proton therapy may help to reduce the radiation dose to the OARs and reduce toxicities, especially the risks for cardiac morbidity and second cancers. Because proton therapy may have some disadvantages, identifying the patients and the circumstances that may benefit the most from proton therapy is important. We present modern guidelines to identify adult lymphoma patients who may derive the greatest benefit from proton therapy, along with an analysis of the advantages and disadvantages of proton treatment.
Department of Oncology Charles University Prague and Motol University Hospital Prague Czech Republic
Department of Oncology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark; and
Department of Radiation Oncology Guy's and St Thomas' Hospital London United Kingdom
Department of Radiation Oncology Institut Curie Paris France
Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY
Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX
Department of Radiation Oncology University of Florida Jacksonville FL
Department of Radiation Oncology University of Pennsylvania Philadelphia PA
Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston TX
Department of Radiation Physics University of Louisiana Baton Rouge LA
Proton Therapy Department Proton Therapy Center Czech Prague Czech Republic
Zobrazit více v PubMed
Tseng YD, Cutter DJ, Plastaras JP, et al. . Evidence-based review on the use of proton therapy in lymphoma from the Particle Therapy Cooperative Group (PTCOG) Lymphoma Subcommittee. Int J Radiat Oncol Biol Phys. 2017;99(4):825-842. PubMed
Yahalom J, Illidge T, Specht L, et al. ; International Lymphoma Radiation Oncology Group. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92(1):11-31. PubMed
Specht L, Yahalom J, Illidge T, et al. ; ILROG. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854-862. PubMed
Illidge T, Specht L, Yahalom J, et al. ; International Lymphoma Radiation Oncology Group. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89(1):49-58. PubMed
Hodgson DC, Dieckmann K, Terezakis S, Constine L; International Lymphoma Radiation Oncology Group. Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: guidelines from the International Lymphoma Radiation Oncology Group. Pract Radiat Oncol. 2015;5(2):85-92. PubMed
Homann K, Howell R, Eley J, et al. . The need for individualized studies to compare radiogenic second cancer (RSC) risk in proton versus photon Hodgkin lymphoma patient treatments. J Proton Therapy. 2015;1(1):118.
Eley J, Newhauser W, Homann K, et al. . Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system. Cancers (Basel). 2015;7(1):427-438. PubMed PMC
Zeng C, Plastaras JP, James P, et al. . Proton pencil beam scanning for mediastinal lymphoma: treatment planning and robustness assessment. Acta Oncol. 2016;55(9-10):1132-1138. PubMed
Jørgensen AY, Maraldo MV, Brodin NP, et al. . The effect on esophagus after different radiotherapy techniques for early stage Hodgkin’s lymphoma. Acta Oncol. 2013;52(7):1559-1565. PubMed
Sachsman S, Hoppe BS, Mendenhall NP, et al. . Proton therapy to the subdiaphragmatic region in the management of patients with Hodgkin lymphoma. Leuk Lymphoma. 2015;56(7):2019-2024. PubMed
Maraldo MV, Brodin P, Aznar MC, et al. . Doses to carotid arteries after modern radiation therapy for Hodgkin lymphoma: is stroke still a late effect of treatment? Int J Radiat Oncol Biol Phys. 2013;87(2):297-303. PubMed
Toltz A, Shin N, Mitrou E, et al. . Late radiation toxicity in Hodgkin lymphoma patients: proton therapy’s potential. J Appl Clin Med Phys. 2015;16(5):167-178. PubMed PMC
Holtzman AL, Hoppe BS, Li Z, et al. . Advancing the therapeutic index in stage III/IV pediatric Hodgkin lymphoma with proton therapy. Int J Part Ther. 2014;1(2):343-356.
Knäusl B, Lütgendorf-Caucig C, Hopfgartner J, et al. . Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy? Strahlenther Onkol. 2013;189(1):54-61. PubMed
Andolino DL, Hoene T, Xiao L, Buchsbaum J, Chang AL. Dosimetric comparison of involved-field three-dimensional conformal photon radiotherapy and breast-sparing proton therapy for the treatment of Hodgkin’s lymphoma in female pediatric patients. Int J Radiat Oncol Biol Phys. 2011;81(4):e667-e671. PubMed
Cella L, Conson M, Pressello MC, et al. . Hodgkin’s lymphoma emerging radiation treatment techniques: trade-offs between late radio-induced toxicities and secondary malignant neoplasms. Radiat Oncol. 2013;8(1):22. PubMed PMC
Chera BS, Rodriguez C, Morris CG, et al. . Dosimetric comparison of three different involved nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(4):1173-1180. PubMed
Hoppe BS, Flampouri S, Zaiden R, et al. . Involved-node proton therapy in combined modality therapy for Hodgkin lymphoma: results of a phase 2 study. Int J Radiat Oncol Biol Phys. 2014;89(5):1053-1059. PubMed
Horn S, Fournier-Bidoz N, Pernin V, et al. . Comparison of passive-beam proton therapy, helical tomotherapy and 3D conformal radiation therapy in Hodgkin’s lymphoma female patients receiving involved-field or involved site radiation therapy. Cancer Radiother. 2016;20(2):98-103. PubMed
Maraldo MV, Brodin NP, Aznar MC, et al. . Doses to head and neck normal tissues for early stage Hodgkin lymphoma after involved node radiotherapy. Radiother Oncol 2014;110(3):441-447. PubMed
Li J, Dabaja B, Reed V, et al. . Rationale for and preliminary results of proton beam therapy for mediastinal lymphoma. Int J Radiat Oncol Biol Phys 2011;81(1):167-174. PubMed
Hoppe BS, Tsai H, Larson G, et al. . Proton therapy patterns-of-care and early outcomes for Hodgkin lymphoma: results from the Proton Collaborative Group Registry. Acta Oncol. 2016;55(11):1378-1380. PubMed
Hoppe BS, Hill-Kayser CE, Tseng YD, et al. . Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann Oncol. 2017;28(9):2179-2184. PubMed PMC
Nanda R, Flampouri S, Mendenhall NP, et al. . Pulmonary toxicity following proton therapy for thoracic lymphoma. Int J Radiat Oncol Biol Phys. 2017;99(2):494-497. PubMed
Newhauser WD, Zhang R. The physics of proton therapy. Phys Med Biol. 2015;60(8):R155-R209. PubMed PMC
International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton-beam therapy. ICRU Report 78.
Eley JG, Newhauser WD, Lüchtenborg R, Graeff C, Bert C. 4D optimization of scanned ion beam tracking therapy for moving tumors. Phys Med Biol 2014;59(13):3431-3452. PubMed PMC
Eley JG, Newhauser WD, Richter D, Lüchtenborg R, Saito N, Bert C. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors. Phys Med Biol 2015;60(4):1717-1740. PubMed PMC
Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy. Med Phys. 2012;39(2):1079-1091. PubMed PMC
Zhu Z, Liu W, Gillin M, et al. . Assessing the robustness of passive scattering proton therapy with regard to local recurrence in stage III non-small cell lung cancer: a secondary analysis of a phase II trial. Radiat Oncol. 2014;9(1):108. PubMed PMC
Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57(11):R99-R117. PubMed PMC
Moyers MF, Miller DW, Bush DA, Slater JD. Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49(5):1429-1438. PubMed
Cuaron JJ, Chang C, Lovelock M, et al. . Exponential increase in relative biological effectiveness along distal edge of a proton Bragg peak as measured by deoxyribonucleic acid double-strand breaks. Int J Radiat Oncol Biol Phys. 2016;95(1):62-69. PubMed PMC
Guan F, Bronk L, Titt U, et al. . Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015;5(1):9850. PubMed PMC
Wedenberg M, Lind BK, Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes. Acta Oncol. 2013;52(3):580-588. PubMed
Mulrooney DA, Yeazel MW, Kawashima T, et al. . Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. PubMed PMC
Travis LB, Hill DA, Dores GM, et al. . Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA. 2003;290(4):465-475. PubMed
Pinnix CC, Smith GL, Milgrom S, et al. . Predictors of radiation pneumonitis in patients receiving intensity modulated radiation therapy for Hodgkin and non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):175-182. PubMed PMC
Maraldo MV, Giusti F, Vogelius IR, et al. . Cardiovascular disease after therapy for Hodgkin lymphoma: a detailed analysis of 9 collaborative EORTC-LYSA trials. Lancet Haematol. 2015;2:e492-e502. PubMed
van Nimwegen FA, Schaapveld M, Cutter DJ, et al. . Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235-243. PubMed
Cutter DJ, Schaapveld M, Darby SC, et al. . Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst. 2015;107(4):djv008. PubMed PMC
Newhauser WD, Schneider C, Wilson L, Shrestha S, Donahue W. A review of analytical models of stray radiation exposures from photon- and proton-beam radiotherapies. Radiat Prot Dosimetry. 2018;180(1-4):245-251. PubMed
Stokkevåg CH, Schneider U, Muren LP, Newhauser W. Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Phys Med. 2017;42:259-262. PubMed
Newhauser WD, Berrington de Gonzalez A, Schulte R, Lee C. A review of radiotherapy-induced late effects research after advanced-technology treatments. Front Oncol. 2016;6:13. PubMed PMC
Darby SC, Ewertz M, McGale P, et al. . Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998. PubMed
Feng M, Moran JM, Koelling T, et al. . Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79(1):10-18. PubMed PMC
Hoppe BS, Flampouri S, Su Z, et al. . Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;84(2):449-455. PubMed
Aznar MC, Maraldo MV, Schut DA, et al. . Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92(1):169-174. PubMed
Voong KR, McSpadden K, Pinnix CC, et al. . Dosimetric advantages of a “butterfly” technique for intensity-modulated radiation therapy for young female patients with mediastinal Hodgkin’s lymphoma. Radiat Oncol. 2014;9(1):94. PubMed PMC
Dabaja BS, Rebueno NC, Mazloom A, et al. . Radiation for Hodgkin’s lymphoma in young female patients: a new technique to avoid the breasts and decrease the dose to the heart. Int J Radiat Oncol Biol Phys. 2011;79(2):503-507. PubMed
Fiandra C, Filippi AR, Catuzzo P, et al. . Different IMRT solutions vs. 3D-conformal radiotherapy in early stage Hodgkin’s lymphoma: dosimetric comparison and clinical considerations. Radiat Oncol. 2012;7(1):186. PubMed PMC
Schaapveld M, Aleman BM, van Eggermond AM, et al. . Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N Engl J Med. 2015;373(26):2499-2511. PubMed
Matney J, Park PC, Bluett J, et al. . Effects of respiratory motion on passively scattered proton therapy versus intensity modulated photon therapy for stage III lung cancer: are proton plans more sensitive to breathing motion? Int J Radiat Oncol Biol Phys. 2013;87(3):576-582. PubMed PMC
Zeng C, Plastaras JP, Tochner ZA, et al. . Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning. Phys Med Biol. 2015;60(7):3013-3029. PubMed
Zacharatou Jarlskog C, Lee C, Bolch WE, Xu XG, Paganetti H. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms. Phys Med Biol. 2008;53(3):693-717. PubMed PMC
Athar BS, Bednarz B, Seco J, Hancox C, Paganetti H. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients. Phys Med Biol. 2010;55(10):2879-2891. PubMed PMC
Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53(4):1043-1056. PubMed
Lin H, Ding X, Kirk M, et al. . Supine craniospinal irradiation using a proton pencil beam scanning technique without match line changes for field junctions. Int J Radiat Oncol Biol Phys. 2014;90(1):71-78. PubMed
Hoppe BS, Mendenhall NP, Louis D, Li Z, Flampouri S. Comparing breath hold and free breathing during intensity-modulated radiation therapy and proton therapy in patients with mediastinal Hodgkin lymphoma. Int J Part Ther. 2017;3(4):492-496. PubMed PMC
O’Brien RT, Cooper BJ, Kipritidis J, Shieh CC, Keall PJ. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing. Phys Med Biol. 2014;59(3):579-595. PubMed
Wong JW, Sharpe MB, Jaffray DA, et al. . The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44(4):911-919. PubMed
Pinnix CC, Cella L, Andraos TY, et al. . Predictors of hypothyroidism in Hodgkin lymphoma survivors after intensity modulated versus 3-dimensional radiation therapy. Int J Radiat Oncol Biol Phys. 2018;101(3):530-540. PubMed PMC
Clinical Intensity Modulated Proton Therapy for Hodgkin Lymphoma: Which Patients Benefit the Most?