Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines

. 2018 Oct 18 ; 132 (16) : 1635-1646. [epub] 20180814

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30108066
Odkazy

PubMed 30108066
PubMed Central PMC6212652
DOI 10.1182/blood-2018-03-837633
PII: S0006-4971(20)60669-3
Knihovny.cz E-zdroje

Among adult lymphoma survivors, radiation treatment techniques that increase the excess radiation dose to organs at risk (OARs) put patients at risk for increased side effects, especially late toxicities. Minimizing radiation to OARs in adults patients with Hodgkin and non-Hodgkin lymphomas involving the mediastinum is the deciding factor for the choice of treatment modality. Proton therapy may help to reduce the radiation dose to the OARs and reduce toxicities, especially the risks for cardiac morbidity and second cancers. Because proton therapy may have some disadvantages, identifying the patients and the circumstances that may benefit the most from proton therapy is important. We present modern guidelines to identify adult lymphoma patients who may derive the greatest benefit from proton therapy, along with an analysis of the advantages and disadvantages of proton treatment.

Erratum v

PubMed

Zobrazit více v PubMed

Tseng YD, Cutter DJ, Plastaras JP, et al. . Evidence-based review on the use of proton therapy in lymphoma from the Particle Therapy Cooperative Group (PTCOG) Lymphoma Subcommittee. Int J Radiat Oncol Biol Phys. 2017;99(4):825-842. PubMed

Yahalom J, Illidge T, Specht L, et al. ; International Lymphoma Radiation Oncology Group. Modern radiation therapy for extranodal lymphomas: field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2015;92(1):11-31. PubMed

Specht L, Yahalom J, Illidge T, et al. ; ILROG. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys. 2014;89(4):854-862. PubMed

Illidge T, Specht L, Yahalom J, et al. ; International Lymphoma Radiation Oncology Group. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2014;89(1):49-58. PubMed

Hodgson DC, Dieckmann K, Terezakis S, Constine L; International Lymphoma Radiation Oncology Group. Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: guidelines from the International Lymphoma Radiation Oncology Group. Pract Radiat Oncol. 2015;5(2):85-92. PubMed

Homann K, Howell R, Eley J, et al. . The need for individualized studies to compare radiogenic second cancer (RSC) risk in proton versus photon Hodgkin lymphoma patient treatments. J Proton Therapy. 2015;1(1):118.

Eley J, Newhauser W, Homann K, et al. . Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system. Cancers (Basel). 2015;7(1):427-438. PubMed PMC

Zeng C, Plastaras JP, James P, et al. . Proton pencil beam scanning for mediastinal lymphoma: treatment planning and robustness assessment. Acta Oncol. 2016;55(9-10):1132-1138. PubMed

Jørgensen AY, Maraldo MV, Brodin NP, et al. . The effect on esophagus after different radiotherapy techniques for early stage Hodgkin’s lymphoma. Acta Oncol. 2013;52(7):1559-1565. PubMed

Sachsman S, Hoppe BS, Mendenhall NP, et al. . Proton therapy to the subdiaphragmatic region in the management of patients with Hodgkin lymphoma. Leuk Lymphoma. 2015;56(7):2019-2024. PubMed

Maraldo MV, Brodin P, Aznar MC, et al. . Doses to carotid arteries after modern radiation therapy for Hodgkin lymphoma: is stroke still a late effect of treatment? Int J Radiat Oncol Biol Phys. 2013;87(2):297-303. PubMed

Toltz A, Shin N, Mitrou E, et al. . Late radiation toxicity in Hodgkin lymphoma patients: proton therapy’s potential. J Appl Clin Med Phys. 2015;16(5):167-178. PubMed PMC

Holtzman AL, Hoppe BS, Li Z, et al. . Advancing the therapeutic index in stage III/IV pediatric Hodgkin lymphoma with proton therapy. Int J Part Ther. 2014;1(2):343-356.

Knäusl B, Lütgendorf-Caucig C, Hopfgartner J, et al. . Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy? Strahlenther Onkol. 2013;189(1):54-61. PubMed

Andolino DL, Hoene T, Xiao L, Buchsbaum J, Chang AL. Dosimetric comparison of involved-field three-dimensional conformal photon radiotherapy and breast-sparing proton therapy for the treatment of Hodgkin’s lymphoma in female pediatric patients. Int J Radiat Oncol Biol Phys. 2011;81(4):e667-e671. PubMed

Cella L, Conson M, Pressello MC, et al. . Hodgkin’s lymphoma emerging radiation treatment techniques: trade-offs between late radio-induced toxicities and secondary malignant neoplasms. Radiat Oncol. 2013;8(1):22. PubMed PMC

Chera BS, Rodriguez C, Morris CG, et al. . Dosimetric comparison of three different involved nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(4):1173-1180. PubMed

Hoppe BS, Flampouri S, Zaiden R, et al. . Involved-node proton therapy in combined modality therapy for Hodgkin lymphoma: results of a phase 2 study. Int J Radiat Oncol Biol Phys. 2014;89(5):1053-1059. PubMed

Horn S, Fournier-Bidoz N, Pernin V, et al. . Comparison of passive-beam proton therapy, helical tomotherapy and 3D conformal radiation therapy in Hodgkin’s lymphoma female patients receiving involved-field or involved site radiation therapy. Cancer Radiother. 2016;20(2):98-103. PubMed

Maraldo MV, Brodin NP, Aznar MC, et al. . Doses to head and neck normal tissues for early stage Hodgkin lymphoma after involved node radiotherapy. Radiother Oncol 2014;110(3):441-447. PubMed

Li J, Dabaja B, Reed V, et al. . Rationale for and preliminary results of proton beam therapy for mediastinal lymphoma. Int J Radiat Oncol Biol Phys 2011;81(1):167-174. PubMed

Hoppe BS, Tsai H, Larson G, et al. . Proton therapy patterns-of-care and early outcomes for Hodgkin lymphoma: results from the Proton Collaborative Group Registry. Acta Oncol. 2016;55(11):1378-1380. PubMed

Hoppe BS, Hill-Kayser CE, Tseng YD, et al. . Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann Oncol. 2017;28(9):2179-2184. PubMed PMC

Nanda R, Flampouri S, Mendenhall NP, et al. . Pulmonary toxicity following proton therapy for thoracic lymphoma. Int J Radiat Oncol Biol Phys. 2017;99(2):494-497. PubMed

Newhauser WD, Zhang R. The physics of proton therapy. Phys Med Biol. 2015;60(8):R155-R209. PubMed PMC

International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton-beam therapy. ICRU Report 78.

Eley JG, Newhauser WD, Lüchtenborg R, Graeff C, Bert C. 4D optimization of scanned ion beam tracking therapy for moving tumors. Phys Med Biol 2014;59(13):3431-3452. PubMed PMC

Eley JG, Newhauser WD, Richter D, Lüchtenborg R, Saito N, Bert C. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors. Phys Med Biol 2015;60(4):1717-1740. PubMed PMC

Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy. Med Phys. 2012;39(2):1079-1091. PubMed PMC

Zhu Z, Liu W, Gillin M, et al. . Assessing the robustness of passive scattering proton therapy with regard to local recurrence in stage III non-small cell lung cancer: a secondary analysis of a phase II trial. Radiat Oncol. 2014;9(1):108. PubMed PMC

Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57(11):R99-R117. PubMed PMC

Moyers MF, Miller DW, Bush DA, Slater JD. Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49(5):1429-1438. PubMed

Cuaron JJ, Chang C, Lovelock M, et al. . Exponential increase in relative biological effectiveness along distal edge of a proton Bragg peak as measured by deoxyribonucleic acid double-strand breaks. Int J Radiat Oncol Biol Phys. 2016;95(1):62-69. PubMed PMC

Guan F, Bronk L, Titt U, et al. . Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015;5(1):9850. PubMed PMC

Wedenberg M, Lind BK, Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes. Acta Oncol. 2013;52(3):580-588. PubMed

Mulrooney DA, Yeazel MW, Kawashima T, et al. . Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. PubMed PMC

Travis LB, Hill DA, Dores GM, et al. . Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA. 2003;290(4):465-475. PubMed

Pinnix CC, Smith GL, Milgrom S, et al. . Predictors of radiation pneumonitis in patients receiving intensity modulated radiation therapy for Hodgkin and non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):175-182. PubMed PMC

Maraldo MV, Giusti F, Vogelius IR, et al. . Cardiovascular disease after therapy for Hodgkin lymphoma: a detailed analysis of 9 collaborative EORTC-LYSA trials. Lancet Haematol. 2015;2:e492-e502. PubMed

van Nimwegen FA, Schaapveld M, Cutter DJ, et al. . Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235-243. PubMed

Cutter DJ, Schaapveld M, Darby SC, et al. . Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst. 2015;107(4):djv008. PubMed PMC

Newhauser WD, Schneider C, Wilson L, Shrestha S, Donahue W. A review of analytical models of stray radiation exposures from photon- and proton-beam radiotherapies. Radiat Prot Dosimetry. 2018;180(1-4):245-251. PubMed

Stokkevåg CH, Schneider U, Muren LP, Newhauser W. Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Phys Med. 2017;42:259-262. PubMed

Newhauser WD, Berrington de Gonzalez A, Schulte R, Lee C. A review of radiotherapy-induced late effects research after advanced-technology treatments. Front Oncol. 2016;6:13. PubMed PMC

Darby SC, Ewertz M, McGale P, et al. . Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998. PubMed

Feng M, Moran JM, Koelling T, et al. . Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79(1):10-18. PubMed PMC

Hoppe BS, Flampouri S, Su Z, et al. . Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2012;84(2):449-455. PubMed

Aznar MC, Maraldo MV, Schut DA, et al. . Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92(1):169-174. PubMed

Voong KR, McSpadden K, Pinnix CC, et al. . Dosimetric advantages of a “butterfly” technique for intensity-modulated radiation therapy for young female patients with mediastinal Hodgkin’s lymphoma. Radiat Oncol. 2014;9(1):94. PubMed PMC

Dabaja BS, Rebueno NC, Mazloom A, et al. . Radiation for Hodgkin’s lymphoma in young female patients: a new technique to avoid the breasts and decrease the dose to the heart. Int J Radiat Oncol Biol Phys. 2011;79(2):503-507. PubMed

Fiandra C, Filippi AR, Catuzzo P, et al. . Different IMRT solutions vs. 3D-conformal radiotherapy in early stage Hodgkin’s lymphoma: dosimetric comparison and clinical considerations. Radiat Oncol. 2012;7(1):186. PubMed PMC

Schaapveld M, Aleman BM, van Eggermond AM, et al. . Second cancer risk up to 40 years after treatment for Hodgkin’s lymphoma. N Engl J Med. 2015;373(26):2499-2511. PubMed

Matney J, Park PC, Bluett J, et al. . Effects of respiratory motion on passively scattered proton therapy versus intensity modulated photon therapy for stage III lung cancer: are proton plans more sensitive to breathing motion? Int J Radiat Oncol Biol Phys. 2013;87(3):576-582. PubMed PMC

Zeng C, Plastaras JP, Tochner ZA, et al. . Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning. Phys Med Biol. 2015;60(7):3013-3029. PubMed

Zacharatou Jarlskog C, Lee C, Bolch WE, Xu XG, Paganetti H. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms. Phys Med Biol. 2008;53(3):693-717. PubMed PMC

Athar BS, Bednarz B, Seco J, Hancox C, Paganetti H. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients. Phys Med Biol. 2010;55(10):2879-2891. PubMed PMC

Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53(4):1043-1056. PubMed

Lin H, Ding X, Kirk M, et al. . Supine craniospinal irradiation using a proton pencil beam scanning technique without match line changes for field junctions. Int J Radiat Oncol Biol Phys. 2014;90(1):71-78. PubMed

Hoppe BS, Mendenhall NP, Louis D, Li Z, Flampouri S. Comparing breath hold and free breathing during intensity-modulated radiation therapy and proton therapy in patients with mediastinal Hodgkin lymphoma. Int J Part Ther. 2017;3(4):492-496. PubMed PMC

O’Brien RT, Cooper BJ, Kipritidis J, Shieh CC, Keall PJ. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing. Phys Med Biol. 2014;59(3):579-595. PubMed

Wong JW, Sharpe MB, Jaffray DA, et al. . The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44(4):911-919. PubMed

Pinnix CC, Cella L, Andraos TY, et al. . Predictors of hypothyroidism in Hodgkin lymphoma survivors after intensity modulated versus 3-dimensional radiation therapy. Int J Radiat Oncol Biol Phys. 2018;101(3):530-540. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace