Palaeozoic giant dragonflies were hawker predators

. 2018 Aug 14 ; 8 (1) : 12141. [epub] 20180814

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30108284
Odkazy

PubMed 30108284
PubMed Central PMC6092361
DOI 10.1038/s41598-018-30629-w
PII: 10.1038/s41598-018-30629-w
Knihovny.cz E-zdroje

The largest insects to have ever lived were the giant meganeurids of the Late Palaeozoic, ancient stem relatives of our modern dragonflies. With wingspans up to 71 cm, these iconic insects have been the subject of varied documentaries on Palaeozoic life, depicting them as patrolling for prey through coal swamp forests amid giant lycopsids, and cordaites. Such reconstructions are speculative as few definitive details of giant dragonfly biology are known. Most specimens of giant dragonflies are known from wings or isolated elements, but Meganeurites gracilipes preserves critical body structures, most notably those of the head. Here we show that it is unlikely it thrived in densely forested environments where its elongate wings would have become easily damaged. Instead, the species lived in more open habitats and possessed greatly enlarged compound eyes. These were dorsally hypertrophied, a specialization for long-distance vision above the animal in flight, a trait convergent with modern hawker dragonflies. Sturdy mandibles with acute teeth, strong spines on tibiae and tarsi, and a pronounced thoracic skewness are identical to those specializations used by dragonflies in capturing prey while in flight. The Palaeozoic Odonatoptera thus exhibited considerable morphological specializations associated with behaviours attributable to 'hawkers' or 'perchers' among extant Odonata.

Zobrazit více v PubMed

Kukalová-Peck J. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera) Palaeodiversity. 2009;2:169–198.

Schneider JW. Taxonomie, Biostratigraphie und Palökologie der Blattodea-Fauna aus dem Stefan von Commentry (Frankreich). Versuch einer Revision. Freiberger Forschungsh. (C) 1983;384:77–100.

Gewecke M, Heinzel H-G, Philippen J. Role of antennae of the dragonfly Orthetrum cancellatum in flight control. Nature. 1974;249:584–585. doi: 10.1038/249584a0. DOI

Berry R, van Kleef J, Stange G. The mapping of visual space by dragonfly lateral ocelli. J. Comp. Physiol. (A) 2007;193:495–513. doi: 10.1007/s00359-006-0204-8. PubMed DOI

Needham JG, Anthony MH. The skewness of the thorax in the Odonata. J. N. Y. Entomol. Soc. 1903;11(3):117–125.

Brongniart C. Sur un gigantesque Neurorthoptère, provenant des terrains houillers de Commentry (Allier) Compt. rend. hebdomadaires des séances Acad. Sci. 1884;98:832–833.

Nel A, Fleck G, Garrouste R, Gand G, Lapeyrie J, Bybee SM, Prokop J. Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica (A) 2009;289:89–121. doi: 10.1127/pala/289/2009/89. DOI

Wootton RJ, Kukalová-Peck J. Flight adaptations in Palaeozoic Palaeoptera (Insecta) Biol. Rev. 2000;75:129–167. doi: 10.1017/S0006323199005459. PubMed DOI

Prokop J, et al. Paleozoic nymphal wing pads support dual model of insect wing origins. Curr. Biol. 2017;27:263–269. doi: 10.1016/j.cub.2016.11.021. PubMed DOI

Wootton RJ, Kukalová-Peck J, Newman JS, Muzon J. Smart engineering in the Mid-Carboniferous: how well could Paleozoic dragonflies fly? Science. 1998;282:749–751. doi: 10.1126/science.282.5389.749. PubMed DOI

DiMichele, W. A. & Hook, R. W. Paleozoic terrestrial ecosystems. In A. K. Behrensmeyer et al., eds., Terrestrial ecosystems through time. 205–325 (University of Chicago Press, 1992).

DiMichele WA, Falcon-Lang HJ. Fossil forests in growth position (T0 assemblages): origin, taphonomic biases and palaeoecological significance. J. Geol. Soc. 2011;168:585–605. doi: 10.1144/0016-76492010-103. DOI

Krings M, Kerp H, Taylor EL, Taylor TN. Reconstruction of Pseudomariopteris busquetii, a vine-like Late Carboniferous-Early Permian pteridosperm. Am. J. Bot. 2001;88:767–776. doi: 10.2307/2657029. PubMed DOI

Falcon-Lang H. A calamitalean forest preserved in growth position in the Pennsylvanian coal measures of South Wales: Implications for palaeoecology, ontogeny and taphonomy. Rev. Palaeobot. Palynol. 2015;214:51–67. doi: 10.1016/j.revpalbo.2014.10.001. DOI

Pritchard G. The prey of adult dragonflies in Northern Alberta. The Canadian Entomologist. 1964;96:821–825. doi: 10.4039/Ent96821-6. DOI

Watson JAL. Apocordulia macrops, a new crepuscular gomphomacromiine dragonfly from South-East Australia (Odonata: Corduliidae) J. Austral. Entomol. Soc. 1980;9(4):287–292. doi: 10.1111/j.1440-6055.1980.tb00988.x. DOI

Bechly, G. Phylogenetic systematics of Odonata. - homepage on Internet site: https://bechly.lima-city.de/phylosys.htm (2016).

Carle FL, Karl M, Kjer KM, May ML. A molecular phylogeny and classification of Anisoptera (Odonata) Arthropod Syst. Phyl. 2015;73:281–301.

Olberg RM, Worthington AH, Fox JL, Bessette CE, Loosemore MP. Prey size selection and distance estimation in foraging adult dragonflies. J. Comp. Physiol. (A) 2005;191:791–797. doi: 10.1007/s00359-005-0002-8. PubMed DOI

Sherk TE. Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J. Exp. Zool. 1978;203:61–80. doi: 10.1002/jez.1402030107. PubMed DOI

Labhart T, Nilsson D-E. The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J. Comp. Physiol. 1995;176:437–453. doi: 10.1007/BF00196410. DOI

Sauseng M, Pabst M-A, Kral K. The dragonfly Libellula quadrimaculata (Odonata: Libellulidae) makes optimal use of the dorsal fovea of the compound eyes during perching. Eur. J. Entomol. 2003;100:475–479. doi: 10.14411/eje.2003.071. DOI

Fraser FC. Proc. R. Zool. Soc. N. S. W. 1960. A handbook of the dragonflies of Australia with keys for the identification of all species; pp. 1–67.

Pinhey ECGD. (Odonata) of CentralAfrica. Occ. Pap. Rhodes-Livingstone Mus. 1961;14:1–97.

Garrison, R. W., von Ellenrieder, N. & Louton, J. A. Dragonfly genera of the new world: an illustrated and annotated key to the Anisoptera, 368 pp. (The Johns Hopkins University Press, 2006).

Borkenstein A, Schroeter A, Joedicke R. Aeshna viridis is an early bird - matutinal matings in a crepuscular species (Odonata: Aeshnidae) Odonatologica. 2016;45(1–2):37–56.

Brauckmann C, Koch L, Kemper M. Spinnentiere (Arachnida) und Insekten aus den Vorhalle-Schichten (Namurium B; Ober-Karbon) von Hagen-Vorhalle (West-Deutschland) Geol. Paläont. Westf., Westf. Mus. Naturk. 1985;3:1–132.

Zessin W. Einige Aspekte zur Biologie paläozoischer Libellen (Odonatoptera) Entomol. Generalis. 2008;31(3):261–278. doi: 10.1127/entom.gen/31/2008/261. DOI

Jarzembowski EA, Nel A. The earliest damselfly-like insect and the origin of modern dragonflies (Insecta: Odonatoptera: Protozygoptera) Proc. Geol. Assoc. 2002;113(2):165–169. doi: 10.1016/S0016-7878(02)80018-9. DOI

Nel A, Bechly G, Prokop J, Béthoux O, Fleck G. Systematics and evolution of Palaeozoic and Mesozoic damselfly-like Odonatoptera of the ‘protozygopteran’ grade. J. Palaeont. 2012;86(1):81–104. doi: 10.1666/11-020.1. DOI

Riek EF, Kukalová-Peck J. A new interpretation of dragonfly wing venation based upon Early Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic characters states in pterygote wings. Can. J. Zool. 1984;62:1150–1166. doi: 10.1139/z84-166. DOI

Bechly G. Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der Phylogenetischen Systematik und des Grundplanes der *Odonata. Petalura Spec. 1996;2:1–402.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...