Endothelial Microvesicles and Soluble Markers of Endothelial Injury in Critically Ill Newborns
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30116143
PubMed Central
PMC6079510
DOI
10.1155/2018/1975056
Knihovny.cz E-zdroje
- MeSH
- biologické markery krev MeSH
- buněčná membrána metabolismus MeSH
- endotel metabolismus MeSH
- endoteliální buňky MeSH
- kritický stav MeSH
- lidé MeSH
- mikropartikule metabolismus MeSH
- mimotělní membránová oxygenace * MeSH
- novorozenec MeSH
- průtoková cytometrie MeSH
- zánět krev MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
Neonatal systemic inflammatory response and multiple organ dysfunction syndrome are the main postnatal insults influencing mortality and morbidity. Critically ill newborns with high predicted mortality are supported by extracorporeal membrane oxygenation (ECMO). Biomarkers of inflammatory response and endothelial injury can be used for early diagnosis and treatment of critical neonatal situations. The aim of our study was to explore plasma proteins and endothelial microvesicles as markers of inflammation and endothelial activation in newborns on ECMO and to compare them with healthy neonates. Thirteen newborns on ECMO and 13 healthy newborns were included in the study. Plasma soluble biomarkers were measured using multiplex immunoassay based on Luminex® xMAP multianalyte profiling platform. The total microvesicle count and plasma level of surface antigen-specific microvesicles were determined by flow cytometry. The plasma concentration of cell-derived microvesicles was measured using annexin-V labeling, and the endothelial origin of microvesicles was determined using lineage-specific antigen labeling of endothelial cell/microvesicle markers (endoglin/CD105, PECAM1/CD31, VEGFR2/CD309, and MadCAM1). Inflammatory markers (procalcitonin, IL-1β, IL-6, and IL-22) were increased in the ECMO group (P < 0.01). The assessment of endothelial markers showed higher concentrations of endocan and angiopoietin-2 (P < 0.01) in the ECMO group while VEGF in the ECMO group was significantly lower (P < 0.01). In the ECMO group, the concentration of annexin-V-positive microvesicles (total microvesicles) and endothelial microvesicles expressing mucosal vascular addressin cell adhesion molecule 1 (MadCAM1) was increased (P = 0.05). In summary, we found increased concentrations of soluble inflammatory and endothelial markers in the plasma of critically ill newborns with multiple organ dysfunction. Increased plasma concentrations of microvesicles may reflect the activation or damage of blood cells and vasculature including endothelial cells. The measurement of cell membrane-derived microvesicles may be added to the panel of established inflammatory markers in order to increase the sensitivity and specificity of the diagnostic process in critically ill newborns.
3rd Faculty of Medicine Charles University Ruska 87 10000 Praha 10 Czech Republic
Department of Neonatology Thomayer Hospital Prague Videnska 800 14059 Praha 4 Czech Republic
Zobrazit více v PubMed
Mohangoo A. D., Buitendijk S. E., Szamotulska K., et al. Gestational age patterns of fetal and neonatal mortality in Europe: results from the Euro-Peristat project. PLoS One. 2011;6(11, article e24727) doi: 10.1371/journal.pone.0024727. PubMed DOI PMC
Zeitlin J., Wildman K., Bréart G., et al. Selecting an indicator set for monitoring and evaluating perinatal health in Europe: criteria, methods and results from the PERISTAT project. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2003;111(Supplement 1):S5–S14. doi: 10.1016/j.ejogrb.2003.09.002. PubMed DOI
Sappenfield W. M., Peck M. G., Gilbert C. S., Haynatzka V. R., Bryant T. Perinatal periods of risk: phase 2 analytic methods for further investigating feto-infant mortality. Maternal and Child Health Journal. 2010;14(6):851–863. doi: 10.1007/s10995-010-0624-5. PubMed DOI
Mugford M., Elbourne D., Field D. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database of Systematic Reviews. 2008;16(3, article CD001340) doi: 10.1002/14651858.CD001340.pub2. PubMed DOI
Rehder K. J., Turner D. A., Cheifetz I. M. Extracorporeal membrane oxygenation for neonatal and pediatric respiratory failure: an evidence-based review of the past decade (2002–2012) Pediatric Critical Care Medicine. 2013;14(9):851–861. doi: 10.1097/PCC.0b013e3182a5540d. PubMed DOI
Mildner R. J., Taub N., Vyas J. R., et al. Cytokine imbalance in infants receiving extracorporeal membrane oxygenation for respiratory failure. Biology of the Neonate. 2005;88(4):321–327. doi: 10.1159/000087630. PubMed DOI
Hofer N., Miiller W., Resch B. Systemic inflammatory response syndrome (SIRS) definition and correlation with early-onset bacterial infection of the newborn. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2010;95(2, article F151) doi: 10.1136/adc.2009.161638. PubMed DOI
Paulus P., Jennewein C., Zacharowski K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers. 2011;16(supplement 1):S11–S21. doi: 10.3109/1354750X.2011.587893. PubMed DOI
Aird W. C. Endothelium in health and disease. Pharmacological Reports. 2008;60(1):139–143. PubMed
D'Alquen D., Kramer B. W., Seidenspinner S., et al. Activation of umbilical cord endothelial cells and fetal inflammatory response in preterm infants with chorioamnionitis and funisitis. Pediatric Research. 2005;57(2):263–269. doi: 10.1203/01.PDR.0000148713.48218.86. PubMed DOI
Masoura S., Kalogiannidis I., Makedou K., et al. Biomarkers of endothelial dysfunction in preeclampsia and neonatal morbidity: a case-control study. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 2014;175:119–123. doi: 10.1016/j.ejogrb.2014.01.012. PubMed DOI
Hecht J. L., Fichorova R. N., Tang V. F., et al. Relationship between neonatal blood protein concentrations and placenta histologic characteristics in extremely low GA newborns. Pediatric Research. 2011;69(1):68–73. doi: 10.1203/PDR.0b013e3181fed334. PubMed DOI PMC
Freyssinet J. M. Cellular microparticles: what are they bad or good for? Journal of Thrombosis and Haemostasis. 2003;1(7):1655–1662. doi: 10.1046/j.1538-7836.2003.00309.x. PubMed DOI
Vítková V., Živný J., Janota J. Endothelial cell-derived microvesicles: potential mediators and biomarkers of pathologic processes. Biomarkers in Medicine. 2018;12(2):161–175. doi: 10.2217/bmm-2017-0182. PubMed DOI
Simak J., Holada K., Risitano A. M., Zivny J. H., Young N. S., Vostal J. G. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. British Journal of Haematology. 2004;125(6):804–813. doi: 10.1111/j.1365-2141.2004.04974.x. PubMed DOI
Lovren F., Verma S. Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clinical Chemistry. 2013;59(8):1166–1174. doi: 10.1373/clinchem.2012.199711. PubMed DOI
Awad H. A., Tantawy A. A., El-Farrash R. A., Ismail E. A., Youssif N. M. CD144+ endothelial microparticles as a marker of endothelial injury in neonatal ABO blood group incompatibility. Blood Transfusion. 2014;12(2):250–259. doi: 10.2450/2013.0101-13. PubMed DOI PMC
Tan Z., Yuan Y., Chen S., Chen Y., Chen T. X. Plasma endothelial microparticles, TNF-α and IL-6 in Kawasaki disease. Indian Pediatrics. 2013;50(5):501–503. doi: 10.1007/s13312-013-0152-7. PubMed DOI
McILwain R. B., Timpa J. G., Kurundkar A. R., et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Laboratory Investigation. 2010;90(1):128–139. doi: 10.1038/labinvest.2009.119. PubMed DOI PMC
Ruth A., McCracken C. E., Fortenberry J. D., Hebbar K. B. Extracorporeal therapies in pediatric severe sepsis: findings from the pediatric health-care information system. Critical Care. 2015;19(1):p. 397. doi: 10.1186/s13054-015-1105-4. PubMed DOI PMC
Palud A., Parmentier-Decrucq E., Pastre J., de Freitas Caires N., Lassalle P., Mathieu D. Evaluation of endothelial biomarkers as predictors of organ failures in septic shock patients. Cytokine. 2015;73(2):213–218. doi: 10.1016/j.cyto.2015.02.013. PubMed DOI
Ioakeimidou A., Pagalou E., Kontogiorgi M., et al. Increase of circulating endocan over sepsis follow-up is associated with progression into organ dysfunction. European Journal of Clinical Microbiology & Infectious Diseases. 2017;36(10):1749–1756. doi: 10.1007/s10096-017-2988-6. PubMed DOI PMC
Saldir M., Tunc T., Cekmez F., et al. Endocan and soluble triggering receptor expressed on myeloid cells-1 as novel markers for neonatal sepsis. Pediatrics and Neonatology. 2015;56(6):415–421. doi: 10.1016/j.pedneo.2015.03.006. PubMed DOI
Leung D. W., Cachianes G., Kuang W. J., Goeddel D. V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–1309. doi: 10.1126/science.2479986. PubMed DOI
Shifren J. L., Doldi N., Ferrara N., Mesiano S., Jaffe R. B. In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and myocytes, but not vascular endothelium: implications for mode of action. Journal of Clinical Endocrinology and Metabolism. 1994;79(1):316–322. doi: 10.1210/jcem.79.1.8027247. PubMed DOI
Lassus P., Turanlahti M., Heikkilä P., et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. American Journal of Respiratory and Critical Care Medicine. 2001;164(10):1981–1987. doi: 10.1164/ajrccm.164.10.2012036. PubMed DOI
Oltmanns K. M., Gehring H., Rudolf S., et al. Acute hypoxia decreases plasma VEGF concentration in healthy humans. American Journal of Physiology Endocrinology and Metabolism. 2006;290(3):E434–E439. doi: 10.1152/ajpendo.00508.2004. PubMed DOI
Malamitsi-Puchner A., Tziotis J., Tsonou A., Protonotariou E., Sarandakou A., Creatsas G. Changes in serum levels of vascular endothelial growth factor in males and females throughout life. Journal of the Society for Gynecologic Investigation. 2000;7(5):309–312. doi: 10.1177/107155760000700507. PubMed DOI
Malamitsi-Puchner A., Tziotis J., Protonotariou E., Sarandakou A., Creatsas G. Angiogenic factors in the perinatal period: diversity in biological functions reflected in their serum concentrations soon after birth. Annals of the New York Academy of Sciences. 2000;900:169–173. doi: 10.1111/j.1749-6632.2000.tb06227.x. PubMed DOI
Polglase G. R., Ong T., Hillman N. H. Cardiovascular alterations and multiorgan dysfunction after birth asphyxia. Clinics in Perinatology. 2016;43(3):469–483. doi: 10.1016/j.clp.2016.04.006. PubMed DOI PMC
Hassoun H. T., Kone B. C., Mercer D. W., Moody F. G., Weisbrodt N. W., Moore F. A. Post-injury multiple organ failure: the role of the gut. Shock. 2001;15(1):1–10. doi: 10.1097/00024382-200115010-00001. PubMed DOI
Kurundkar A. R., Killingsworth C. R., McIlwain R. B., et al. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet. Pediatric Research. 2010;68(2):128–133. doi: 10.1203/pdr.0b013e3181e4c9f8. PubMed DOI PMC
MohanKumar K., Killingsworth C. R., Britt McILwain R., et al. Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet. Laboratory Investigation. 2014;94(2):150–160. doi: 10.1038/labinvest.2013.149. PubMed DOI PMC