Evaluation of enterococci for potential probiotic utilization in dogs

. 2019 Mar ; 64 (2) : 177-187. [epub] 20180817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30120711

Grantová podpora
2/0012/16 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Odkazy

PubMed 30120711
DOI 10.1007/s12223-018-0640-1
PII: 10.1007/s12223-018-0640-1
Knihovny.cz E-zdroje

Some strains of the genus Enterococcus are effective probiotic bacteria if they meet safety and probiotic criteria. In our study, 17 canine enterococci previously selected from a group of 160 isolates based on safety criteria were screened for some functional properties relevant to their use as probiotics. The results of antimicrobial resistance testing showed sensitivity of eleven strains to EFSA recommended antimicrobials. In contrast, the most frequent resistance was observed for cefotaxim (15/17) and oxacillin (13/17). PCR detection of resistance genes (vanA, vanB, vanC, tetM, tetL, ermB, and mefA) revealed the presence of mefA gene in five Enterococcus faecium strains and vanA gene in one strain. The production of enzymes commonly associated with intestinal diseases was in general rare (β-glucosidase 2/17, α-chymotrypsin 1/17, N-acetyl-β-glucosaminidase 0/17, and β-glucuronidase 0/17). The measurement of strain survival rate (%) under the conditions simulating gastric (pH 2.5) and bile juices (0.3% bile) showed considerable differences between strains (< 0.01 to 4.7% after 90 min for gastric juices, 48.0 to 254.0% after 180 min for bile). The concentration of produced L-lactic acid ranged between 83.1 to 119.3 mmol/L after 48 h cultivation depending on the strain. All strains fermented 16 out of 49 different carbohydrates (range from 17 to 23/49). Antimicrobial activity was recorded for two strains against some species of Listeria sp. and Enterococcus sp. Finally, two E. faecium candidates (IK25 and D7) were selected for testing in dogs, and hereafter they could possibly extend the currently limited range of beneficial bacteria of canine origin used as a dietary supplement for dogs.

Zobrazit více v PubMed

Biopolymers. 2000;55(1):50-61 PubMed

J Immunol. 2002 Jan 1;168(1):171-8 PubMed

J Appl Microbiol. 2001 Dec;91(6):997-1003 PubMed

Can Vet J. 2002 Oct;43(10):771-4 PubMed

Int J Food Microbiol. 2003 Aug 1;84(3):299-318 PubMed

Folia Microbiol (Praha). 2004;49(2):203-7 PubMed

Clin Microbiol Infect. 2005 Nov;11(11):927-30 PubMed

Syst Appl Microbiol. 2006 Mar;29(2):145-55 PubMed

Appl Environ Microbiol. 2007 Feb;73(3):730-9 PubMed

Eur J Clin Nutr. 2008 Feb;62(2):225-31 PubMed

Appl Environ Microbiol. 2007 May;73(10):3307-19 PubMed

Vet Microbiol. 2008 Dec 10;132(3-4):293-301 PubMed

Clin Microbiol Infect. 2011 Apr;17(4):533-8 PubMed

Int J Food Microbiol. 2011 Sep 1;149(1):28-36 PubMed

Appl Environ Microbiol. 2012 Jan;78(1):1-6 PubMed

Protein Sci. 2012 Dec;21(12):1792-807 PubMed

Elife. 2013 Apr 16;2:e00458 PubMed

Pharm Res. 1986 Jun;3(3):123-31 PubMed

Int J Infect Dis. 2014 Sep;26:76-82 PubMed

Microb Biotechnol. 2015 Mar;8(2):221-9 PubMed

J Vet Med Sci. 2014 Oct;76(10):1399-402 PubMed

Anaerobe. 2015 Aug;34:14-23 PubMed

Folia Microbiol (Praha). 2017 Nov;62(6):491-498 PubMed

Vet Med Sci. 2016 Jan 11;2(2):71-94 PubMed

J Nutr Sci. 2017 Jul 31;6:e38 PubMed

Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Dec;256(2):168-74 PubMed

J Clin Microbiol. 1995 Jan;33(1):24-7 PubMed

Trends Microbiol. 1994 Oct;2(10):353-7 PubMed

Appl Environ Microbiol. 1996 May;62(5):1676-82 PubMed

Microbiology. 1997 Jul;143 ( Pt 7):2287-94 PubMed

Appl Environ Microbiol. 1997 Nov;63(11):4321-30 PubMed

J Bacteriol. 1998 Apr;180(8):1988-94 PubMed

FEMS Microbiol Lett. 1999 Jan 1;170(1):151-8 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...