Comparison of two methods for indirect measurement of atmospheric dust deposition: Street-dust composition and vegetation-health status derived from hyperspectral image data

. 2019 Apr ; 48 (4) : 423-435. [epub] 20180825

Jazyk angličtina Země Švédsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30145733

Grantová podpora
Research Core Funding P1-0025 Javna Agencija za Raziskovalno Dejavnost RS
244242 FP7 International Cooperation
17-05743S Grantová Agentura České Republiky

Odkazy

PubMed 30145733
PubMed Central PMC6411812
DOI 10.1007/s13280-018-1093-0
PII: 10.1007/s13280-018-1093-0
Knihovny.cz E-zdroje

This study presents a statistical comparison between the in situ measurements of the elemental composition of street dust and a forest health status classification derived from aerial hyperspectral image data (HyMap). Combining these two methods allowed us to indirectly pinpoint at a high spatial resolution the atmospheric dust emissions and its effects in a study area around the open-pit lignite mine in Sokolov, Czech Republic. The results reveal a statistically significant relationship between increased Al, Na, Li and Sr levels in street dust and decreased forest health status, and the highest number of statistically significant correlations within a 100 m distance from the street-dust sampling points. Differences in lithological composition were unable to sufficiently explain these changes, therefore anthropogenic factors like dust emissions from coal mining and coal combustion, as well as urbanisation and other industries might be the reason for this link. Such studies are a crucial step in developing new high spatial resolution methods for determining atmospheric dust deposition and their effects.

Zobrazit více v PubMed

Allot RW, Hewitt CN, Kelly MR. The environmental half-lives and mean residence times of contaminants in dust for an urban environment: Barrow-in-Furnes. Science of the Total Environment. 1990;93:403–410. doi: 10.1016/0048-9697(90)90131-D. PubMed DOI

Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA. Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of road re-suspended dust contribution. Atmospheric Environment. 2006;40:2058–2067. doi: 10.1016/j.atmosenv.2005.11.046. DOI

Balabanova B, Stafilov T, Šajn R, Bačeva K. Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine. International Journal of Environmental Science and Technology. 2014;11:517–528. doi: 10.1007/s13762-013-0262-8. DOI

Balabanova B, Stafilov T, Šajn R, Tănăselia C. Long-term geochemical evolution of lithogenic versus anthropogenic distribution of macro and trace elements in household attic dust. Archives of Environmental Contamination and Toxicology. 2017;72:88–107. doi: 10.1007/s00244-016-0336-y. PubMed DOI

Bavec Š, Gosar M, Miler M, Biester H. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia) Environmental Geochemistry and Health. 2017;39:443–465. doi: 10.1007/s10653-016-9819-z. PubMed DOI

Borůvka L, Vacek O, Jehlička J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma. 2005;128:289–300. doi: 10.1016/j.geoderma.2005.04.010. DOI

Christoforidis A, Stamatis N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma. 2009;151:257–263. doi: 10.1016/j.geoderma.2009.04.016. DOI

Clevers JGPW, De Jong SM, Epema GF, Van der Meer FD, Bakker WH, Skid-more AK, Scholte KH. Derivation of the red edge index using the MERIS standard band setting. International Journal of Remote Sensing. 2002;23:3169–3184. doi: 10.1080/01431160110104647. DOI

Curran PJ, Windham WR, Gholz HL. Exploring the relationship between reflectance red edge and chlorophyll concentration in Slash Pine Leaves. Tree Physiology. 1995;15:203–206. doi: 10.1093/treephys/15.3.203. PubMed DOI

Dehghani S, Moore F, Keshavarzi B, Hale BA. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety. 2017;136:92–103. doi: 10.1016/j.ecoenv.2016.10.037. PubMed DOI

Dotzler S, Hill J, Buddenbaum H, Stoffels J. The potential of EnMAP and Sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sensing. 2015;7:14227–14258. doi: 10.3390/rs71014227. DOI

Egli M, Sartori G, Mirabella A, Giaccai D, Favilli F, Scherrer D, Krebs R, Delbos E. The influence of weathering and organic matter on heavy metals lability in silicatic Alpine soils. Science of the Total Environment. 2010;408:931–946. doi: 10.1016/j.scitotenv.2009.10.005. PubMed DOI

Everitt JH, Yang C, Escobar DE, Lonard RI, Davis MR. Reflectance characteristics and remote sensing of a riparian zone in south Texas. The Southwestern Naturalist. 2002;47:433–439. doi: 10.2307/3672500. DOI

Fernández-Manso A, Fernández-Manso O, Quintano C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation. 2016;50:170–175. doi: 10.1016/j.jag.2016.03.005. DOI

Gould W. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications. 2000;10:1861–1870. doi: 10.1890/1051-0761(2000)010[1861:RSOVPS]2.0.CO;2. DOI

Harraz HZ, Hamdy MM, El-Mamoney MH. Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine Eastern Desert Egypt. Journal of African Earth Sciences. 2012;68:1–14. doi: 10.1016/j.jafrearsci.2012.03.009. DOI

Keshavarzi B, Tazarvi Z, Rajabzadeh MA, Najmeddin A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment. 2015;119:1–10. doi: 10.1016/j.atmosenv.2015.08.001. DOI

Kirchgessner HD, Reichert K, Hauff K, Steinbrecher R, Schnitzler JP, Pfundel EE. Light and temperature, but not UV radiation, affect chlorophylls and carotenoids in Norway spruce needles (Picea abies (L.) Karst.) Plant, Cell and Environment. 2003;26:1169–1179. doi: 10.1046/j.1365-3040.2003.01043.x. DOI

Knorn J, Rabe A, Radeloff VC, Kuemmerle T, Kozak J, Hostert P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment. 2009;113:957–964. doi: 10.1016/j.rse.2009.01.010. DOI

Kolb EC, Worsnop DR. Chemistry and composition of atmospheric aerosol particles. Annual Review of Physical Chemistry. 2012;63:471–491. doi: 10.1146/annurev-physchem-032511-143706. PubMed DOI

Kopačková V, Lhotáková Z, Oulehle F, Albrechtova J. Assessing forest health via linking the geochemical properties of a soil profile with the biochemical parameters of vegetation. International Journal of Environmental Science and Technology. 2015;12:1987–2002. doi: 10.1007/s13762-014-0602-3. DOI

Kopačková V, Mišurec J, Lhotáková S, Oulehle F, Albrechtová J. Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. International Journal of Applied Earth Observation and Geoinformation. 2014;27:169–186. doi: 10.1016/j.jag.2013.09.009. DOI

Lamb DW, Brown RB. Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research. 2001;78:117–125. doi: 10.1006/jaer.2000.0630. DOI

Laurin GV, Puletti N, Hawthorne W, Liesenberg V, Corona P, Papale D, Chen Q, Valentini R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment. 2016;176:163–176. doi: 10.1016/j.rse.2016.01.017. DOI

Li HH, Chen LJ, Yu L, Guo ZB, Shan CQ, Lin JQ, Gu JG, Yang ZB. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment. 2017;586:1076–1084. doi: 10.1016/j.scitotenv.2017.02.092. PubMed DOI

Li X, Wu T, Bao H, Liu X, Xu C, Zhao Y, Liu D, Yu H. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): Spatial distribution, mobility behavior, and health risk. Environmental Science and Pollution Research. 2017;24:19749–19766. doi: 10.1007/s11356-017-9526-z. PubMed DOI

Li Y, Yu Y, Yang Z, Zhenyao S, Xuan W, Yanpeng C. A comparison of metal distribution in surface dust and soil among super city, town, and rural area. Environmental Science and Pollution Research. 2016;23:7849–7860. doi: 10.1007/s11356-015-5911-7. PubMed DOI

Li Z, Feng X, Li G, Bi X, Zhu J, Qin H, Dai Z, Liu J. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution. 2013;182:408–416. doi: 10.1016/j.envpol.2013.07.041. PubMed DOI

Lu XW, Wang LJ, Lei K, Huang J, Zhai YX. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials. 2009;161:1058–1062. doi: 10.1016/j.jhazmat.2008.04.052. PubMed DOI

MHSPE. 2014. The New Dutchlist. In: Intervention values and target values—soil quality standards. Ministry of Housing, Spatial Planning, and the Environment, Directorate General for Environmental Protection, Department of Soil Protection, The Hague, The Netherlands. . Retrieved January 16, 2014, from http://www.contaminatedland.co.uk/stdguid/dutch-l.htm.

Miler M, Gosar M. Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: A case study of Žerjav, Slovenia. Microscopy and Microanalysis. 2013;19:1606–1619. doi: 10.1017/S1431927613013202. PubMed DOI

Mišurec J, Kopačková V, Lhotáková Z, Hanuš J, Weyermann J, Entcheva-Campbell P, Albrechtová J. Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status. Journal of Applied Remote Sensing. 2012;6:063545-1.

Ordóñez A, Álvarez R, De Miguel E, Charlesworth S. Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15 years of study. Science of the Total Environment. 2015;524–525:93–103. doi: 10.1016/j.scitotenv.2015.04.024. PubMed DOI

Penuelas J, Baret F, Filella I. Semiempirical indexes to assess carotenoidschlorophyll-a ratio from leaf spectral reflectance. Photosynthetica. 1995;31:221–230.

Pu RL, Kelly M, Anderson GL, Gong P. Using CASI hyperspectral imagery to detect mortality and vegetation stress associated with a new hardwood forest disease. Photogrammetric Engineering and Remote Sensing. 2008;74:65–75. doi: 10.14358/PERS.74.1.65. DOI

Querol X, Fernhndez-Turiel JL, Lopez-Soler A. Trace elements in coal and their behaviour during combustion in a large power station. Fuel. 1995;74:331–343. doi: 10.1016/0016-2361(95)93464-O. DOI

Rathod PH, Rossiter DG, Noomen MF, van der Meer FD. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. International Journal of Phytoremediation. 2013;15:405–426. doi: 10.1080/15226514.2012.702805. PubMed DOI

Richter R. Atmospheric/topographic correction for airborne imagery. Wessling: DLR German Aerospace Centre; 2009.

Romer C, Wahabzada M, Ballvora A, Pinto F, Rossini M, Panigada C, Behmann J, Leon J, et al. Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology. 2012;39:878–890. doi: 10.1071/FP12060. PubMed DOI

Šajn R, Aliu M, Stafilov T, Alijagić J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovice, Kosovo/Kosove. Journal of Geochemical Exploration. 2013;134:1–16. doi: 10.1016/j.gexplo.2013.06.018. DOI

Salminen, R., M.J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis, et al. 2005. Geochemical Atlas of Europe. Part 1—background information, methodology and maps. Geological Survey of Finland, Espoo.

Sanches ID, Souza Filho CR, Magalhaes LA, Quiterio GCM, Alves MN, Oliveira WJ. Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing. 2013;78:85–101. doi: 10.1016/j.isprsjprs.2013.01.007. DOI

Schlapfer, D., 1998. Parametric Geocoding, PARGE Using Guide, Version 2.3. ReSe Applications Schlapfer & Remote Sensing Laboratories, University of Zurich, Zurich.

Suchara I, Sucharova J, Hola M, Reimann C, Boyd R, Filzmoser P, Englmaier P. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Science of the Total Environmen. 2011;409:2281–2297. doi: 10.1016/j.scitotenv.2011.02.003. PubMed DOI

Tang Z, Chai M, Cheng J, Jin J, Yang Y, Nie Z, Huang Q, Li Y. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicology and Environmental Safety. 2017;138:83–91. doi: 10.1016/j.ecoenv.2016.11.003. PubMed DOI

Vejahati F, Xu Z, Gupta R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization: A review. Fuel. 2010;89:904–911. doi: 10.1016/j.fuel.2009.06.013. DOI

Vogelmann JE, Xian G, Homer C, Tolk B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sensing of Environment. 2012;122:92–105. doi: 10.1016/j.rse.2011.06.027. DOI

Wei X, Gao B, Wang P, Zhou H, Lu J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety. 2015;112:186–192. doi: 10.1016/j.ecoenv.2014.11.005. PubMed DOI

Yu Y, Li Y, Li B, Stenstrom MK. Profiles of lead in urban dust and the effect of the distance to multi-industry in an old heavy industry city in China. Ecotoxicology and Environmental Safety. 2017;137:281–287. doi: 10.1016/j.ecoenv.2016.11.031. PubMed DOI

Žibret G. Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia) Ambio. 2012;41:292–301. PubMed PMC

Žibret G, Van Tonder D, Žibret L. Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environmental Science and Pollution Research. 2013;20:4455–4468. doi: 10.1007/s11356-012-1398-7. PubMed DOI

Zierold KM, Sears CG. Community views about the health and exposure of children living near a coal ash storage site. Journal of Community Health. 2015;40:357–363. doi: 10.1007/s10900-014-9943-6. PubMed DOI

Zinnert JC, Via SM, Young DR. Distinguishing natural from anthropogenic stress in plants: Physiology, fluorescence and hyperspectral reflectance. Plant and Soil. 2013;366:133–141. doi: 10.1007/s11104-012-1414-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...