Fabrication and Multiscale Structural Properties of Interconnected Porous Biomaterial for Tissue Engineering by Freeze Isostatic Pressure (FIP)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30149507
PubMed Central
PMC6164489
DOI
10.3390/jfb9030051
PII: jfb9030051
Knihovny.cz E-zdroje
- Klíčová slova
- biomaterials, bone regeneration, microstructure, porous materials, tissue engineering,
- Publikační typ
- časopisecké články MeSH
Biomaterial for tissue engineering is a topic of huge progress with a recent surge in fabrication and characterization advances. Biomaterials for tissue engineering applications or as scaffolds depend on various parameters such as fabrication technology, porosity, pore size, mechanical strength, and surface available for cell attachment. To serve the function of the scaffold, the porous biomaterial should have enough mechanical strength to aid in tissue engineering. With a new manufacturing technology, we have obtained high strength materials by optimizing a few processing parameters such as pressure, temperature, and dwell time, yielding the monolith with porosity in the range of 80%⁻93%. The three-dimensional interconnectivity of the porous media through scales for the newly manufactured biomaterial has been investigated using newly developed 3D correlative and multi-modal imaging techniques. Multiscale X-ray tomography, FIB-SEM Slice & View stacking, and high-resolution STEM-EDS electronic tomography observations have been combined allowing quantification of morphological and geometrical spatial distributions of the multiscale porous network through length scales spanning from tens of microns to less than a nanometer. The spatial distribution of the wall thickness has also been investigated and its possible relationship with pore connectivity and size distribution has been studied.
CNRS Univ Bordeaux ICMCB UMR 5026 F 33600 Pessac France
Thermo Fisher Scientific Impasse Rudolf Diesel 33700 Merignac France
Thermo Fisher Scientific Vlastimila Pecha 1282 12 62700 Brno Czech Republic
Zobrazit více v PubMed
Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science–An Introduction to Materials in Medicine. Elsevier Academic Press; San Diego, CA, USA: 2004.
Anderson D.G., Burdick J.A., Langer R. Smart biomaterials. Science. 2004;305:1923–1924. doi: 10.1126/science.1099987. PubMed DOI
Alvarez K., Nakajima H. Metallic scaffolds for bone regeneration. Materials. 2009;2:790–832. doi: 10.3390/ma2030790. DOI
Li Z., Gu X.N., Lou S., Zheng Y.F. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–1344. doi: 10.1016/j.biomaterials.2007.12.021. PubMed DOI
Wu S.L., Liu X.M., Yeung K.W.K., Hu T., Xu Z.S., Chung C.Y., Chu P.K. Hydrogen release from titanium hydride in foaming of orthopedic NiTi scaffolds. Acta Biomater. 2011;7:1387–1397. doi: 10.1016/j.actbio.2010.10.008. PubMed DOI
He J., Huang T., Gan L., Zhou Z.K., Jiang B., Wu Y., Wu F., Gu Z.W. Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: In vitro and in vivo study. J. Biomed. Mater. Res. Part A. 2012;100:1706–1715. doi: 10.1002/jbm.a.34121. PubMed DOI
Weiner S., Wagner H.D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998;28:271–298. doi: 10.1146/annurev.matsci.28.1.271. DOI
LeGeros R.Z. Properties of osteoconductive biomaterials: Calcium Phosphates. Clin. Orthop. Relat. Res. 2002;395:81–98. doi: 10.1097/00003086-200202000-00009. PubMed DOI
Gauthier O., Bouler J.M., Aguado E., Pilet P., Daculsi G. Macroporous biphasic Calcium Phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133–139. doi: 10.1016/S0142-9612(97)00180-4. PubMed DOI
Davies J.E. In vitro modeling of the bone/implant interface. Anat. Rec. 1996;245:426–445. doi: 10.1002/(SICI)1097-0185(199606)245:2<426::AID-AR21>3.0.CO;2-Q. PubMed DOI
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI
Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review. J. Funct. Biomater. 2015;6:1099–1140. doi: 10.3390/jfb6041099. PubMed DOI PMC
Eksi A., Saritas S. Effects of Powder Hardness and Particle Size on the Densification of Cold Isostatically Pressed Powders. Turk. J. Eng. Environ. Sci. 2002;26:377–384.
Byrappa K., Yoshimura M. Handbook of Hydrothermal Technology. William Andrew; Norwich, NY, USA: 2001. A Technology for Crystal Growth and Materials Processing.
Bouville F., Studart A.R. Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 2017;8:14655. doi: 10.1038/ncomms14655. PubMed DOI PMC
Ndayishimiye A., Largeteau A., Prakasam M., Pechev S., Dourges M.-A., Goglio G. Low temperature hydrothermal sintering process for the quasi-complete densification of nanometric α-quartz. Scr. Mater. 2018;145:118–121. doi: 10.1016/j.scriptamat.2017.10.023. DOI
Blackford J.R. Sintering and microstructure of ice: A review. J. Phys. D Appl. Phys. 2007;40:R355–R385. doi: 10.1088/0022-3727/40/21/R02. DOI
Le Bail A., Chevalier D., Mussa D.M., Ghoul M. High pressure freezing and thawing of foods: A review. Int. J. Refrig. 2002;25:504–513. doi: 10.1016/S0140-7007(01)00030-5. DOI
Largeteau A., Prakasam M. Trends in high pressure developments for new perspectives. Solid State Sci. 2018;80:141–146. doi: 10.1016/j.solidstatesciences.2018.04.012. DOI