Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 CA114563
NCI NIH HHS - United States
U10 CA180886
NCI NIH HHS - United States
U10 CA180899
NCI NIH HHS - United States
PubMed
30150206
PubMed Central
PMC6265640
DOI
10.1182/blood-2018-05-849059
PII: S0006-4971(20)60690-5
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie diagnóza genetika MeSH
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 16 genetika MeSH
- lidské chromozomy, pár 21 genetika MeSH
- mladiství MeSH
- nádorové supresorové proteiny genetika MeSH
- předškolní dítě MeSH
- prognóza MeSH
- protein FUS vázající RNA genetika MeSH
- protein PEBP2A2 genetika MeSH
- regulace genové exprese u leukemie MeSH
- represorové proteiny genetika MeSH
- retrospektivní studie MeSH
- transkripční regulátor ERG genetika MeSH
- transkriptom MeSH
- translokace genetická * MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CBFA2T3 protein, human MeSH Prohlížeč
- ERG protein, human MeSH Prohlížeč
- FUS protein, human MeSH Prohlížeč
- nádorové supresorové proteiny MeSH
- protein FUS vázající RNA MeSH
- protein PEBP2A2 MeSH
- represorové proteiny MeSH
- RUNX1 protein, human MeSH Prohlížeč
- transkripční regulátor ERG MeSH
To study the prognostic relevance of rare genetic aberrations in acute myeloid leukemia (AML), such as t(16;21), international collaboration is required. Two different types of t(16;21) translocations can be distinguished: t(16;21)(p11;q22), resulting in the FUS-ERG fusion gene; and t(16;21)(q24;q22), resulting in RUNX1-core binding factor (CBFA2T3). We collected data on clinical and biological characteristics of 54 pediatric AML cases with t(16;21) rearrangements from 14 international collaborative study groups participating in the international Berlin-Frankfurt-Münster (I-BFM) AML study group. The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort. RUNX1-CBFA2T3 (n = 23) had significantly lower median white blood cell count (12.5 × 109/L, P = .03) compared with the reference cohort. FUS-ERG rearranged AML (n = 31) had no predominant French-American-British (FAB) type, whereas 76% of RUNX1-CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the reference cohort (P = .004). Four-year event-free survival (EFS) of patients with FUS-ERG was 7% (standard error [SE] = 5%), significantly lower compared with the reference cohort (51%, SE = 1%, P < .001). Four-year EFS of RUNX1-CBFA2T3 was 77% (SE = 8%, P = .06), significantly higher compared with the reference cohort. Cumulative incidence of relapse was 74% (SE = 8%) in FUS-ERG, 0% (SE = 0%) in RUNX1-CBFA2T3, compared with 32% (SE = 1%) in the reference cohort (P < .001). Multivariate analysis identified both FUS-ERG and RUNX1-CBFA2T3 as independent risk factors with hazard ratios of 1.9 (P < .0001) and 0.3 (P = .025), respectively. These results describe 2 clinically relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, patients with RUNX1-CBFA2T3 rearranged AML may benefit from stratification in the standard risk treatment, whereas patients with FUS-ERG rearranged AML should be considered high-risk.
Children's Oncology Group Monrovia CA
Department of Cytogenetics Saint Louis Hospital Paris France
Department of Pathology St Jude Children's Research Hospital Memphis TN
Department of Pediatric Hematology Oncology Medical School Hannover Hannover Germany
Department of Pediatric Sciences University of Pavia Pavia Italy
Department of Pediatrics Seattle Children's Hospital University of Washington Seattle WA; and
Dutch Childhood Oncology Group The Hague The Netherlands
Fred Hutchinson Cancer Research Center Seattle WA
Pediatrics and Adolescent Medicine Aarhus University Hospital Aarhus Denmark
Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
Women and Children's Health Hematology Oncology Laboratory University of Padova Padova Italy
Zobrazit více v PubMed
Rubnitz JE, Gibson B, Smith FO. Acute myeloid leukemia. Hematol Oncol Clin North Am. 2010;24(1):35-63. PubMed
de Rooij JD, Zwaan CM, van den Heuvel-Eibrink M. Pediatric AML: from biology to clinical management. J Clin Med. 2015;4(1):127-149. PubMed PMC
Zwaan CM, Kolb EA, Reinhardt D, et al. . Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol. 2015;33(27):2949-2962. PubMed PMC
Rubnitz JE. Current management of childhood acute myeloid leukemia. Paediatr Drugs. 2017;19(1):1-10. PubMed
Alexander TB, Wang L, Inaba H, et al. . Decreased relapsed rate and treatment-related mortality contribute to improved outcomes for pediatric acute myeloid leukemia in successive clinical trials. Cancer. 2017;123(19):3791-3798. PubMed PMC
Balgobind BV, Hollink IH, Arentsen-Peters ST, et al. . Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica. 2011;96(10):1478-1487. PubMed PMC
Balgobind BV, Raimondi SC, Harbott J, et al. . Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114(12):2489-2496. PubMed PMC
Coenen EA, Zwaan CM, Reinhardt D, et al. . Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood. 2013;122(15):2704-2713. PubMed PMC
Hasle H, Alonzo TA, Auvrignon A, et al. . Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood. 2007;109(11):4641-4647. PubMed
Sandahl JD, Coenen EA, Forestier E, et al. . t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014;99(5):865-872. PubMed PMC
Klein K, Kaspers G, Harrison CJ, et al. . Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the International Berlin-Frankfurt-Münster Study Group. J Clin Oncol. 2015;33(36):4247-4258. PubMed PMC
Panagopoulos I, Aman P, Fioretos T, et al. . Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer. 1994;11(4):256-262. PubMed
Kong XT, Ida K, Ichikawa H, et al. . Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood. 1997;90(3):1192-1199. PubMed
Ismael O, Shimada A, Elmahdi S, et al. . RUNX1 mutation associated with clonal evolution in relapsed pediatric acute myeloid leukemia with t(16;21)(p11;q22). Int J Hematol. 2014;99(2):169-174. PubMed
De Braekeleer E, Douet-Guilbert N, Le Bris MJ, Morel F, Férec C, De Braekeleer M. RUNX1-MTG16 fusion gene in acute myeloblastic leukemia with t(16;21)(q24;q22): case report and review of the literature. Cancer Genet Cytogenet. 2008;185(1):47-50. PubMed
Kawashima N, Shimada A, Taketani T, et al. . Childhood acute myeloid leukemia with bone marrow eosinophilia caused by t(16;21)(q24;q22). Int J Hematol. 2012;95(5):577-580. PubMed
Gamou T, Kitamura E, Hosoda F, et al. . The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood. 1998;91(11):4028-4037. PubMed
Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. Available at http://cgap.nci.nih.gov/Chromosomes/Mitelman. Accessed 29 August 2018.
Imashuku S, Hibi S, Sako M, et al. . Hemophagocytosis by leukemic blasts in 7 acute myeloid leukemia cases with t(16;21)(p11;q22): common morphologic characteristics for this type of leukemia. Cancer. 2000;88(8):1970-1975. PubMed
Park IJ, Park JE, Kim HJ, Jung HJ, Lee WG, Cho SR. Acute myeloid leukemia with t(16;21)(q24;q22) and eosinophilia: case report and review of the literature. Cancer Genet Cytogenet. 2010;196(1):105-108. PubMed
ClinicalTrials.gov. Bortezomib and sorafenib tosylate in treating patients with newly diagnosed acute myeloid leukemia. Available at: https://clinicaltrials.gov/ct2/show/NCT01371981. Accessed 23 April 2018.
Children’s Oncology Group. AAML1031: A phase III randomized trial for patients with de novo AML using bortezomib and sorafenib for patients with high allelic ratio ratio FLT3/ITD. Available at https://www.childrensoncologygroup.org/index.php/aaml1031. Accessed 29 August 2018.
Prentice RL, Kalbfleisch JD. Mixed discrete and continuous Cox regression model. Lifetime Data Anal. 2003;9(2):195-210. PubMed
Hsu CH, Nguyen C, Yan C, et al. . Transcriptome profiling of pediatric core binding factor AML. PLoS One. 2015;10(9):e0138782. PubMed PMC
Fortier JM, Payton JE, Cahan P, Ley TJ, Walter MJ, Graubert TA. POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature. Leukemia. 2010;24(5):950-957. PubMed PMC
Buldini B, Rizzati F, Masetti R, et al. . Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol. 2017;177(1):116-126. PubMed
Rubnitz JE, Inaba H, Dahl G, et al. . Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543-552. PubMed PMC
Ommen HB. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol. 2016;7(1):3-16. PubMed PMC
Karol SE, Coustan-Smith E, Cao X, et al. . Prognostic factors in children with acute myeloid leukaemia and excellent response to remission induction therapy. Br J Haematol. 2015;168(1):94-101. PubMed PMC
MRD-AML-BFM Study Group; Langebrake C, Creutzig U, Dworzak M, et al. . Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol. 2006;24(22):3686-3692. PubMed
Rasche M, Zimmermann M, Borschel L, et al. . Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012 [published online ahead of print 22 February 2018]. Leukemia. doi:10.1038/s41375-018-0071-7. PubMed PMC
Athanasiadou A, Stalika E, Sidi V, Papaioannou M, Gaitatzi M, Anagnostopoulos A. RUNX1-MTG16 fusion gene in de novo acute myeloblastic leukemia with t(16;21)(q24;q22). Leuk Lymphoma. 2011;52(1):145-147. PubMed
Berger R, Le Coniat M, Romana SP, Jonveaux P. Secondary acute myeloblastic leukemia with t(16;21) (q24;q22). involving the AML1 gene. Hematol Cell Ther. 1996;38(2):183-186. PubMed
Boils CL, Mohamed AN. t(16;21)(q24;q22) in acute myeloid leukemia: case report and review of the literature. Acta Haematol. 2008;119(2):65-68. PubMed
Jeandidier E, Dastugue N, Mugneret F, et al. ; Groupe Français de Cytogénétique Hématologique (GFCH). Abnormalities of the long arm of chromosome 21 in 107 patients with hematopoietic disorders: a collaborative retrospective study of the Groupe Français de Cytogénétique Hématologique. Cancer Genet Cytogenet. 2006;166(1):1-11. PubMed
Kondoh K, Nakata Y, Furuta T, et al. . A pediatric case of secondary leukemia associated with t(16;21)(q24;q22) exhibiting the chimeric AML1-MTG16 gene. Leuk Lymphoma. 2002;43(2):415-420. PubMed
La Starza R, Sambani C, Crescenzi B, Matteucci C, Martelli MF, Mecucci C. AML1/MTG16 fusion gene from a t(16;21)(q24;q22) translocation in treatment-induced leukemia after breast cancer. Haematologica. 2001;86(2):212-213. PubMed
Nylund SJ, Ruutu T, Saarinen U, Knuutila S. Metaphase fluorescence in situ hybridization (FISH) in the follow-up of 60 patients with haemopoietic malignancies. Br J Haematol. 1994;88(4):778-783. PubMed
Ottone T, Hasan SK, Montefusco E, et al. . Identification of a potential “hotspot” DNA region in the RUNX1 gene targeted by mitoxantrone in therapy-related acute myeloid leukemia with t(16;21) translocation. Genes Chromosomes Cancer. 2009;48(3):213-221. PubMed
Raimondi SC, Kalwinsky DK, Hayashi Y, Behm FG, Mirro J Jr, Williams DL. Cytogenetics of childhood acute nonlymphocytic leukemia. Cancer Genet Cytogenet. 1989;40(1):13-27. PubMed
Salomon-Nguyen F, Busson-Le Coniat M, Lafage Pochitaloff M, Mozziconacci J, Berger R, Bernard OA. AML1-MTG16 fusion gene in therapy-related acute leukemia with t(16;21)(q24;q22): two new cases. Leukemia. 2000;14(9):1704-1705. PubMed
Shimada M, Ohtsuka E, Shimizu T, et al. . A recurrent translocation, t(16;21)(q24;q22), associated with acute myelogenous leukemia: identification by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1997;96(2):102-105. PubMed
Takeda K, Shinohara K, Kameda N, Ariyoshi K. A case of therapy-related acute myeloblastic leukemia with t(16;21)(q24;q22) after chemotherapy with DNA-topoisomerase II inhibitors, etoposide and mitoxantrone, and the alkylating agent, cyclophosphamide. Int J Hematol. 1998;67(2):179-186. PubMed
Traweek ST, Slovak ML, Nademanee AP, Brynes RK, Niland JC, Forman SJ. Clonal karyotypic hematopoietic cell abnormalities occurring after autologous bone marrow transplantation for Hodgkin’s disease and non-Hodgkin’s lymphoma. Blood. 1994;84(3):957-963. PubMed
Zatkova A, Fonatsch C, Sperr WR, Valent P. A patient with de novo AML M1 and t(16;21) with karyotype evolution. Leuk Res. 2007;31(9):1319-1321. PubMed
Bhatia S, Krailo MD, Chen Z, et al. . Therapy-related myelodysplasia and acute myeloid leukemia after Ewing sarcoma and primitive neuroectodermal tumor of bone: a report from the Children’s Oncology Group. Blood. 2007;109(1):46-51. PubMed PMC
Arber DA, Orazi A, Hasserjian R, et al. . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405. PubMed
Swerdlow SH, Campo E, Harris NL, et al. . WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC; 2008.
Ichikawa H, Shimizu K, Katsu R, Ohki M. Dual transforming activities of the FUS (TLS)-ERG leukemia fusion protein conferred by two N-terminal domains of FUS (TLS). Mol Cell Biol. 1999;19(11):7639-7650. PubMed PMC
Sotoca AM, Prange KH, Reijnders B, et al. . The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia. Oncogene. 2016;35(15):1965-1976. PubMed PMC
de Bruijn MF, Speck NA. Core-binding factors in hematopoiesis and immune function. Oncogene. 2004;23(24):4238-4248. PubMed
Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2(7):502-513. PubMed
Rowley JD. Biological implications of consistent chromosome rearrangements in leukemia and lymphoma. Cancer Res. 1984;44(8):3159-3168. PubMed
Calabi F, Cilli V. CBFA2T1, a gene rearranged in human leukemia, is a member of a multigene family. Genomics. 1998;52(3):332-341. PubMed
Lavallée VP, Lemieux S, Boucher G, et al. . RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature. Blood. 2016;127(20):2498-2501. PubMed
Medeiros BC, Othus M, Estey EH, Fang M, Appelbaum FR. Unsuccessful diagnostic cytogenetic analysis is a poor prognostic feature in acute myeloid leukaemia. Br J Haematol. 2014;164(2):245-250. PubMed PMC
Wang J, Chen S, Xiao W, et al. . CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol. 2018;11(1):7. PubMed PMC
Petrov JC, Wada M, Pinz KG, et al. . Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia. 2018;32(6):1317-1326. PubMed PMC
Jetani H, Garcia-Cadenas I, Nerreter T, et al. . CAR T-cells targeting FLT3 have potent activity against FLT3-ITD+ AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia. 2018;32(5):1168-1179. PubMed
Campagne O, Delmas A, Fouliard S, et al. . Integrated pharmacokinetic/pharmacodynamic model of a bispecific CD3xCD123 DART molecule in nonhuman primates: evaluation of activity and impact of immunogenicity. Clin Cancer Res. 2018;24(11):2631-2641. PubMed
Analysis of rare driving events in pediatric acute myeloid leukemia