Interaction of a Potential Anticancer Agent Hypericin and its Model Compound Emodin with DNA and Bovine Serum Albumin
Jazyk angličtina Země Řecko Médium print
Typ dokumentu časopisecké články
PubMed
30150427
PubMed Central
PMC6199584
DOI
10.21873/invivo.11347
PII: 32/5/1063
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, Hypericin, emodin, interaction, serum albumins, thermal stability,
- MeSH
- anthraceny MeSH
- DNA chemie metabolismus MeSH
- emodin chemie farmakologie MeSH
- molekulární struktura MeSH
- perylen analogy a deriváty chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- sérový albumin hovězí chemie metabolismus MeSH
- spektrální analýza MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthraceny MeSH
- DNA MeSH
- emodin MeSH
- hypericin MeSH Prohlížeč
- perylen MeSH
- protinádorové látky MeSH
- sérový albumin hovězí MeSH
BACKGROUND/AIM: We report the incorporation of prospective anticancer agent hypericin into DNA and bovine serum albumin (BSA), respectively, with emphasis on comparison of the differences in interaction mode between hypericin and its model compound emodin. MATERIALS AND METHODS: Spectrophotometric methods were used for determination of the binding constants of the drug complex with biomacromolecules. Differential scanning calorimetry was applied for evaluation of drug-macromolecule complex thermal stability. RESULTS: The strength of interaction expressed by binding constants was found to be 4.0×104 l/mol for hypericin-DNA and 8.1×104 l/mol for emodin-DNA complex. Both molecules stabilize bovine serum albumin macromolecule and bind into the hydrophobic cavity in IIA subunit but their localization within the molecule is different. CONCLUSION: Anticancer agent hypericin and its derivative emodin interact with DNA with medium strength and are probably incorporated into the groove of DNA by hydrogen bonds. Bovine serum albumin can serve as a transport protein for hypericin since the binding force between both molecules is adequate.
Zobrazit více v PubMed
Lopez-Bazzocchi I, Hudson JB, Towers GHN. Antiviral activity of the photoactive plant pigment hypericin. Photochem Photobiol. 1991;54:95–98. PubMed
Andreoni A, Colasanti A, Colasanti P, Mastrocinque M, Riccio P, Roberti G. Laser photosensitization of cells by hypericin. Photochem Photobiol. 1994;59:529–533. PubMed
Miškovský P. Hypericin – A new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Curr Drug Targets. 2002;3:55–84. PubMed
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Peng QJ. Photodynamic therapy. Natl Cancer Inst. 1998;90:889–905. PubMed PMC
Kiesslich T, Krammer B, Plaetzer K. Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr Med Chem. 2006;13:2189–2020. PubMed
Karioti A, Bilia AR. Hypericins as potential leads for new therapeutics. Int J Mol Sci. 2010;11:562–594. PubMed PMC
Radovic J, Maksimovic-Ivanic D, Timotijevic G, Popadic S, Ramic Z, Trajkovic V, Miljkovic D, Stosic-Grujicic S, Mijatovic S. Cell-type dependent response of melanoma cells to aloe emodin. Food Chem Toxicol. 2012;50(9):3181–3189. PubMed
Poliaček I, Stránsky A, Jakuš J, Baráni H, Tomori Z, Halasová E. Activity of the laryngeal abductor and adductor muscles during cough, expiration and aspiration reflexes in cats. Physiol Res. 2003;52(6):749–762. PubMed
Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer. 2002;2:188–200. PubMed
Palchaudhuri R, Hergenrother PJ. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol. 2007;18:497–503. PubMed
Bischoff G, Hoffmann S. DNA-binding of drugs used in medicinal therapies. Curr Med Chem. 2002;9:312–348. PubMed
Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs: What worked and what did not work. Curr Med Chem. 2005;12:127–151. PubMed
Strekowski L, Wilson B. Noncovalent interactions with DNA: An overview. Mutat Res. 2007;623:3–13. PubMed
Peters T Jr. Ligand binding by albumin. All about Albumin Peters T Jr (ed). San Diego, Academic Press. 1995;In:76–132.
Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976;12(6):1052–1061. PubMed
Copeland RA. Protein-ligand binding equilibria. Enzymes – A Practical Introduction to Structure, Mechanism, and Data Analysis. Copeland RA (ed). New York, John Wiley & Sons. 2000;In:76–109.
Pace CN. Measuring and increasing of protein stability. TIBTECH. 1990;8:93–98. PubMed
Sturtevant MJ. Biochemical applications of differential scanning calorimetry. Annu Rev Phys Chem. 1987;38:463–488.
Ciolkowski ML, Fang MM, Lund ME. A surface plasmon resonance method for detecting multiple modes of DNA-ligand interactions. J Pharm Biomed Anal. 2000;22:6. PubMed
Agarwal S, Jangir DK, Mehrotra R. Spectroscopic studies of the effects of anticancer drug mitoxantrone interaction with calf-thymus DNA. J Photochem Photobiol B. 2013;120:177–182. PubMed
Gholivand MB, Kashanian S, Peyman H, Roshanfekr H. DNA-binding study of anthraquinone derivatives using chemometrics methods. Eur J Med Chem. 2011;46:2630–2638. PubMed
Verebová V, Adamčík J, Danko P, Podhradský D, Miškovský P, Staničová J. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA. Biochem Biophys Res Commun. 2014;444:50–55. PubMed
Kočišová E, Chinsky L, Miškovský P. Sequence specific interaction of the photoactive drug hypericin depends on the structural arrangement and the stability of the structure containing its specific 5 ‘AG3’ target: A resonance Raman spectroscopy study. J Biomol Struct Dyn. 1999;17(1):51–59. PubMed
Kumar CV, Turner RS, Asuncion EH. Groove binding of astyrylcyanine dye to the DNA double helix: The salt effect. J Photochem Photobiol A: Chem. 1993;74(2-3):231–238.
Bi S, Zhang H, Qiao C, Sun Y, Liu C. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim Acta A: Mol Biomol Spectrosc. 2008;69(1):123–129. PubMed
Lavery R, Pullman B. Molecular electrostatic potential on the surface envelopes of macromolecules: B-DNA. Int J Quantum Chem. 1981;20(1):259–272.
Shahabadi N, Heidari L. Binding studies of the antidiabetic drug, metformin to calf thymus DNA using multispectroscopic methods. Spectrochim Acta A: Mol Biomol Spectrosc. 2012;97:406–410. PubMed
Frazier RA, Papadopoulou A, Green RJ. Isothermal titration calorimetry study of epicatechin binding to serum albumin. J Pharm Biomed Anal. 2006;41(5):1602–1605. PubMed
Turnbull WB, Daranas AH. On the value of c: Can low affinity systems be studied by isothermal titration of calorimetry. J Am Chem Soc. 2003;125(48):14859–14866. PubMed
Miškovský P, Hritz J, Sanchez-Cortés S, Fabriciová G, Uličný J, Chinsky L. Interaction of hypericin with serum albumins: surface-enhanced Raman spectroscopy, resonance Raman spectroscopy and molecular modeling study. Photochem Photobiol. 2001;74:172–183. PubMed
Senthil V, Longworth JW, Ghiron CA, Grossweiner LI. Photosensitization of aques model systems by hypericin. Biochim Biophys Acta. 1992;1115(3):192–200. PubMed
Michnik A. Thermal stability of bovine serum albumin DSC study. J Therm Anal Calorim. 2003;71(2):509–519.
Moosavi-Mohavedi AA, Bordbar AK, Taleshi AA, Naderimanesh HM, Ghadam P. Mechanism of denaturation of bovine serum albumin by dodecyl trimethylammonium bromide. Int J Biochem Cell Biol. 1996;28(9):991–998. PubMed
Ross PD. Decrease in stability of human albumin with increase in protein concentration. J Biol Chem. 1988;263:11196–11202. PubMed
Fabriciová G, Sanchéz-Cortes S, Garcia-Ramos JV, Miškovský P. Surface-enhanced Raman spectroscopy study of the interaction of the antitumoral drug emodin with human serum albumin. Biopolymers. 2004;74(1-2):125–130. PubMed
Almaqwashi AA, Paramanathan T, Rouzina I, Wiliams MC. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy. Nucleic Acid Res. 2016;44(9):3971–3988. PubMed PMC