An Ab Initio Study of Thermodynamic and Mechanical Stability of Heusler-Based Fe₂AlCo Polymorphs

. 2018 Aug 27 ; 11 (9) : . [epub] 20180827

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30150535

We use quantum-mechanical calculations to test a hypothesis of Glover et al. (J. Mag. Mag. Mater. 15 (1980) 699) that Co atoms in the Fe 2 AlCo compound have on average 3 Fe and 3 Co atoms in their second nearest neighbor shell. We have simulated four structural configurations of Fe 2 AlCo including the full Heusler structure, inverse Heusler polymorph and two other phases matching this idea. The highest thermodynamic stability at T = 0 K is indeed predicted for one of the phases with the distribution of atoms according to Glover and et al. However, small energy differences among three of the studied polymorphs lead to a disordered CsCl-structure-like (B2-like) phase at elevated temperatures. The fourth variant, the full Heusler phase, is predicted to be mechanically unstable. The global magnetic states are predicted to be ferromagnetic but local magnetic moments of Fe and Co atoms sensitively depend on the composition of the first and second coordination shells.

Zobrazit více v PubMed

Heusler F., Starck W., Haupt E. Magnetisch-chemische Studien. Verh. Dtsch. Phys. Ges. 1903;5:219–232.

Webster P. Heusler Alloys. Contemp. Phys. 1969;10:559–577. doi: 10.1080/00107516908204800. DOI

Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Sol. State Chem. 2011;39:1–50. doi: 10.1016/j.progsolidstchem.2011.02.001. DOI

Picozzi S., Continenza A., Freeman A. Co2MnX (X = Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B. 2002;66:094421. doi: 10.1103/PhysRevB.66.094421. DOI

Webster P. Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J. Phys. Chem. Sol. 1971;32:1221. doi: 10.1016/S0022-3697(71)80180-4. DOI

Kübler J., Williams A., Sommers C. Formation and coupling of magnetic-moments in Heusler alloys. Phys. Rev. B. 1983;28:1745–1755. doi: 10.1103/PhysRevB.28.1745. DOI

Galanakis I., Dederichs P., Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 2002;66:174429. doi: 10.1103/PhysRevB.66.174429. DOI

Miura Y., Nagao K., Shirai M. Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1-xFex)Al: A first-principles study. Phys. Rev. B. 2004;69:144413. doi: 10.1103/PhysRevB.69.144413. DOI

Galanakis I., Dederichs P., Papanikolaou N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B. 2002;66:134428. doi: 10.1103/PhysRevB.66.134428. DOI

Kandpal H.C., Fecher G.H., Felser C. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 2007;40:1507–1523. doi: 10.1088/0022-3727/40/6/S01. DOI

Galanakis I., Mavropoulos P., Dederichs P. Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D Appl. Phys. 2006;39:765–775. doi: 10.1088/0022-3727/39/5/S01. DOI

Picozzi S., Continenza A., Freeman A. Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys. Rev. B. 2004;69:094423. doi: 10.1103/PhysRevB.69.094423. DOI

Buschow K., Van Engen P. Magnetic and magneto-optical properties of Heusler alloys based on aluminum and gallium. J. Mag. Mag. Mat. 1981;25:90–96. doi: 10.1016/0304-8853(81)90151-7. DOI

Nishino Y., Kato M., Asano S., Soda K., Hayasaki M., Mizutani U. Semiconductor-like behavior of electrical resistivity in Heusler-type Fe2VAl compound. Phys. Rev. Lett. 1997;79:1909–1912. doi: 10.1103/PhysRevLett.79.1909. DOI

Sakurada S., Shutoh N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005;86:082105. doi: 10.1063/1.1868063. DOI

Shen Q., Chen L., Goto T., Hirai T., Yang J., Meisner G., Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 2001;79:4165–4167. doi: 10.1063/1.1425459. DOI

Chadov S., Qi X., Kuebler J., Fecher G.H., Felser C., Zhang S.C. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mat. 2010;9:541–545. doi: 10.1038/nmat2770. PubMed DOI

Lin H., Wray L.A., Xia Y., Xu S., Jia S., Cava R.J., Bansil A., Hasan M.Z. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 2010;9:546–549. doi: 10.1038/nmat2771. PubMed DOI

Planes A., Manosa L., Acet M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Cond. Matter. 2009;21:233201. doi: 10.1088/0953-8984/21/23/233201. PubMed DOI

Entel P., Buchelnikov V., Khovailo V., Zayak A., Adeagbo W., Gruner M., Herper H., Wassermann E. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D Appl. Phys. 2006;39:865–889. doi: 10.1088/0022-3727/39/5/S13. DOI

Kainuma R., Imano Y., Ito W., Morito H., Sutou Y., Oikawa K., Fujita A., Ishida K., Okamoto S., Kitakami O. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl. Phys. Lett. 2006;88:192513. doi: 10.1063/1.2203211. DOI

Gilleßen M., Dronskowski R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009;30:1290–1299. doi: 10.1002/jcc.21152. PubMed DOI

Gilleßen M., Dronskowski R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010;31:612–619. doi: 10.1002/jcc.21358. PubMed DOI

Grover A.K., Pillay R.G., Nagarajan V., Tandon P.N. Site preference and local environment effects in ferromagnetic ternary alloys. J. Magn. Magn. Mater. 1980;15:699–700. doi: 10.1016/0304-8853(80)90727-1. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of cubic Cr1-xAlxN alloys. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI

Mouhat F., Coudert F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Jain V., Nehra J., Sudheesh V.D., Lakshmi N., Venugopalan K. Comparative study of the structural and magnetic properties of bulk and nano-sized Fe2CoAl. AIP Conf. Proc. 2013;1536:935–936. doi: 10.1063/1.4810537. DOI

Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. Mater. Res. Soc. Symp. Proc. 2013;1524 doi: 10.1557/opl.2013.41. DOI

Friák M., Counts W.A., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-guided materials design of multi-phase Ti-Nb alloys with bone-matching elastic properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI

Raghavan V. Ternary and aluminum phase higher order diagram updates. J. Phase Equi. Diff. 2005;26:623.

Raghavan V. Ternary and higher order aluminum phase diagram updates. J. Phase Equi. Diff. 2005;26:348. doi: 10.1007/s11669-005-0086-4. DOI

Ducher R., Kainuma R., Ohnuma I., Ishida K. Phase equilibria and stability of B2 and L21 ordered phases in the Co-Fe-Ga Heusler alloy system. J. Alloys Compd. 2007;437:93–101. doi: 10.1016/j.jallcom.2006.07.091. DOI

Kumar A., Srivastava P.C. Synthesis and characterization of Co2FeAl Heusler alloy nanoparticles. Mater. Sci. Pol. 2013;31:501–505. doi: 10.2478/s13536-013-0134-4. DOI

Zhu L.F., Friák M., Dick A., Grabowski B., Hickel T., Liot F., Holec D., Schlieter A., Kuehn U., Eckert J., Ebrahimi Z., Emmerich H., Neugebauer J. First-principles study of the thermodynamic and elastic properties of eutectic Fe-Ti alloys. Acta Mater. 2012;60:1594–1602. doi: 10.1016/j.actamat.2011.11.046. DOI

Hemzalová P., Friák M., Šob M., Ma D., Udyansky A., Raabe D., Neugebauer J. Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes. Phys. Rev. B. 2013;88:174103. doi: 10.1103/PhysRevB.88.174103. DOI

Maisel S.B., Hoefler M., Mueller S. A canonical stability-elasticity relationship verified for one million face-centred-cubic structures. Nature. 2012;491:740. doi: 10.1038/nature11609. PubMed DOI

Friák M., Všianská M., Holec D., Zelený M., Šob M. Tensorial elastic properties and stability of interface states associated with Σ 5(210) grain boundaries in Ni3(Al,Si) Sci. Technol. Adv. Mater. 2017;18:273–282. doi: 10.1080/14686996.2017.1312519. PubMed DOI PMC

Craievich P.J., Weinert M., Sanchez J.M., Watson R.E. Local stability of nonequilibrium phases. Phys. Rev. Lett. 1994;72:3076–3079. doi: 10.1103/PhysRevLett.72.3076. PubMed DOI

Šob M., Wang L.G., Vitek V. Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects. Comput. Mater. Sci. 1997;8:100–106. doi: 10.1016/S0927-0256(97)00022-0. DOI

Wang L.G., Šob M., Zhang Z. Instability of higher-energy phases in simple and transition metals. J. Phys. Chem. Solids. 2003;64:863–872. doi: 10.1016/S0022-3697(02)00420-1. DOI

Friák M., Šob M., Vitek V. Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers. Phys. Rev. B. 2001;63:052405. doi: 10.1103/PhysRevB.63.052405. DOI

Qiu S.L., Marcus P.M., Ma H. Tetragonal equilibrium states of Mn and Fe. J. Appl. Phys. 2000;87:5932–5934. doi: 10.1063/1.372571. DOI

Spišák D., Hafner J. Complex reconstruction of γ-iron multilayers on Cu(100): Ab initio local-spin-density investigations. Phys. Rev. B. 2000;61:16129–16136. doi: 10.1103/PhysRevB.61.16129. DOI

Friák M., Hickel T., Körmann F., Udyansky A., Dick A., von Pezold J., Ma D., Kim O., Counts W.A., Šob M., et al. Determining the elasticity of materials employing quantum-mechanical approaches: From the electronic ground state to the limits of materials stability. Steel Res. Int. 2011;82:86–100. doi: 10.1002/srin.201000264. DOI

Friák M., Šob M., Vitek V. Ab initio calculation of tensile strength in iron. Phil. Mag. 2003;83:3529–3537. doi: 10.1080/14786430310001605588. DOI

Legut D., Friák M., Šob M. Phase stability, elasticity, and theoretical strength of polonium from first principles. Phys. Rev. B. 2010;81:214118. doi: 10.1103/PhysRevB.81.214118. DOI

Legut D., Friák M., Šob M. Why is polonium simple cubic and so highly anisotropic? Phys. Rev. Lett. 2007;99:016402. doi: 10.1103/PhysRevLett.99.016402. PubMed DOI

Šob M., Friák M., Legut D., Vitek V. Theoretical strength, magnetism and stability of metals and intermetallics. In: Turchi P., Gonis A., Rajan K., Meike A., editors. Complex Inorganic Solids. Springer; New York, NY, USA: 2005. pp. 307–325.

Šob M., Legut D., Friák M., Fiala J. Magnetism of Ni3Al and Fe3Al under extreme pressure and shape deformation: An ab initio study. J. Mag. Mag. Mat. 2004;272:E205. doi: 10.1016/j.jmmm.2003.12.598. DOI

Friák M., Šob M. Ab initio study of the bcc-hcp transformation in iron. Phys. Rev. B. 2008;77:174117. doi: 10.1103/PhysRevB.77.174117. DOI

Zelený M., Friák M., Šob M. Ab initio study of energetics and magnetism of Fe, Co, and Ni along the trigonal deformation path. Phys. Rev. B. 2011;83:184424. doi: 10.1103/PhysRevB.83.184424. DOI

Momma K., Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...