An Ab Initio Study of Thermodynamic and Mechanical Stability of Heusler-Based Fe₂AlCo Polymorphs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30150535
PubMed Central
PMC6164954
DOI
10.3390/ma11091543
PII: ma11091543
Knihovny.cz E-zdroje
- Klíčová slova
- AlCoFe2, AlFe2Co, CoAlFe2, Fe2CoAl, Heusler, ab initio, disorder, elasticity, stability,
- Publikační typ
- časopisecké články MeSH
We use quantum-mechanical calculations to test a hypothesis of Glover et al. (J. Mag. Mag. Mater. 15 (1980) 699) that Co atoms in the Fe 2 AlCo compound have on average 3 Fe and 3 Co atoms in their second nearest neighbor shell. We have simulated four structural configurations of Fe 2 AlCo including the full Heusler structure, inverse Heusler polymorph and two other phases matching this idea. The highest thermodynamic stability at T = 0 K is indeed predicted for one of the phases with the distribution of atoms according to Glover and et al. However, small energy differences among three of the studied polymorphs lead to a disordered CsCl-structure-like (B2-like) phase at elevated temperatures. The fourth variant, the full Heusler phase, is predicted to be mechanically unstable. The global magnetic states are predicted to be ferromagnetic but local magnetic moments of Fe and Co atoms sensitively depend on the composition of the first and second coordination shells.
Department of Physical Metallurgy and Materials Testing Franz Josef Strasse 18 A 8700 Leoben Austria
Zobrazit více v PubMed
Heusler F., Starck W., Haupt E. Magnetisch-chemische Studien. Verh. Dtsch. Phys. Ges. 1903;5:219–232.
Webster P. Heusler Alloys. Contemp. Phys. 1969;10:559–577. doi: 10.1080/00107516908204800. DOI
Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Sol. State Chem. 2011;39:1–50. doi: 10.1016/j.progsolidstchem.2011.02.001. DOI
Picozzi S., Continenza A., Freeman A. Co2MnX (X = Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B. 2002;66:094421. doi: 10.1103/PhysRevB.66.094421. DOI
Webster P. Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J. Phys. Chem. Sol. 1971;32:1221. doi: 10.1016/S0022-3697(71)80180-4. DOI
Kübler J., Williams A., Sommers C. Formation and coupling of magnetic-moments in Heusler alloys. Phys. Rev. B. 1983;28:1745–1755. doi: 10.1103/PhysRevB.28.1745. DOI
Galanakis I., Dederichs P., Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 2002;66:174429. doi: 10.1103/PhysRevB.66.174429. DOI
Miura Y., Nagao K., Shirai M. Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1-xFex)Al: A first-principles study. Phys. Rev. B. 2004;69:144413. doi: 10.1103/PhysRevB.69.144413. DOI
Galanakis I., Dederichs P., Papanikolaou N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B. 2002;66:134428. doi: 10.1103/PhysRevB.66.134428. DOI
Kandpal H.C., Fecher G.H., Felser C. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 2007;40:1507–1523. doi: 10.1088/0022-3727/40/6/S01. DOI
Galanakis I., Mavropoulos P., Dederichs P. Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D Appl. Phys. 2006;39:765–775. doi: 10.1088/0022-3727/39/5/S01. DOI
Picozzi S., Continenza A., Freeman A. Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys. Rev. B. 2004;69:094423. doi: 10.1103/PhysRevB.69.094423. DOI
Buschow K., Van Engen P. Magnetic and magneto-optical properties of Heusler alloys based on aluminum and gallium. J. Mag. Mag. Mat. 1981;25:90–96. doi: 10.1016/0304-8853(81)90151-7. DOI
Nishino Y., Kato M., Asano S., Soda K., Hayasaki M., Mizutani U. Semiconductor-like behavior of electrical resistivity in Heusler-type Fe2VAl compound. Phys. Rev. Lett. 1997;79:1909–1912. doi: 10.1103/PhysRevLett.79.1909. DOI
Sakurada S., Shutoh N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005;86:082105. doi: 10.1063/1.1868063. DOI
Shen Q., Chen L., Goto T., Hirai T., Yang J., Meisner G., Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 2001;79:4165–4167. doi: 10.1063/1.1425459. DOI
Chadov S., Qi X., Kuebler J., Fecher G.H., Felser C., Zhang S.C. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mat. 2010;9:541–545. doi: 10.1038/nmat2770. PubMed DOI
Lin H., Wray L.A., Xia Y., Xu S., Jia S., Cava R.J., Bansil A., Hasan M.Z. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 2010;9:546–549. doi: 10.1038/nmat2771. PubMed DOI
Planes A., Manosa L., Acet M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Cond. Matter. 2009;21:233201. doi: 10.1088/0953-8984/21/23/233201. PubMed DOI
Entel P., Buchelnikov V., Khovailo V., Zayak A., Adeagbo W., Gruner M., Herper H., Wassermann E. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D Appl. Phys. 2006;39:865–889. doi: 10.1088/0022-3727/39/5/S13. DOI
Kainuma R., Imano Y., Ito W., Morito H., Sutou Y., Oikawa K., Fujita A., Ishida K., Okamoto S., Kitakami O. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl. Phys. Lett. 2006;88:192513. doi: 10.1063/1.2203211. DOI
Gilleßen M., Dronskowski R. A combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 2009;30:1290–1299. doi: 10.1002/jcc.21152. PubMed DOI
Gilleßen M., Dronskowski R. A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 2010;31:612–619. doi: 10.1002/jcc.21358. PubMed DOI
Grover A.K., Pillay R.G., Nagarajan V., Tandon P.N. Site preference and local environment effects in ferromagnetic ternary alloys. J. Magn. Magn. Mater. 1980;15:699–700. doi: 10.1016/0304-8853(80)90727-1. DOI
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI
Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of cubic Cr1-xAlxN alloys. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI
Mouhat F., Coudert F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Jain V., Nehra J., Sudheesh V.D., Lakshmi N., Venugopalan K. Comparative study of the structural and magnetic properties of bulk and nano-sized Fe2CoAl. AIP Conf. Proc. 2013;1536:935–936. doi: 10.1063/1.4810537. DOI
Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. Mater. Res. Soc. Symp. Proc. 2013;1524 doi: 10.1557/opl.2013.41. DOI
Friák M., Counts W.A., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-guided materials design of multi-phase Ti-Nb alloys with bone-matching elastic properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI
Raghavan V. Ternary and aluminum phase higher order diagram updates. J. Phase Equi. Diff. 2005;26:623.
Raghavan V. Ternary and higher order aluminum phase diagram updates. J. Phase Equi. Diff. 2005;26:348. doi: 10.1007/s11669-005-0086-4. DOI
Ducher R., Kainuma R., Ohnuma I., Ishida K. Phase equilibria and stability of B2 and L21 ordered phases in the Co-Fe-Ga Heusler alloy system. J. Alloys Compd. 2007;437:93–101. doi: 10.1016/j.jallcom.2006.07.091. DOI
Kumar A., Srivastava P.C. Synthesis and characterization of Co2FeAl Heusler alloy nanoparticles. Mater. Sci. Pol. 2013;31:501–505. doi: 10.2478/s13536-013-0134-4. DOI
Zhu L.F., Friák M., Dick A., Grabowski B., Hickel T., Liot F., Holec D., Schlieter A., Kuehn U., Eckert J., Ebrahimi Z., Emmerich H., Neugebauer J. First-principles study of the thermodynamic and elastic properties of eutectic Fe-Ti alloys. Acta Mater. 2012;60:1594–1602. doi: 10.1016/j.actamat.2011.11.046. DOI
Hemzalová P., Friák M., Šob M., Ma D., Udyansky A., Raabe D., Neugebauer J. Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes. Phys. Rev. B. 2013;88:174103. doi: 10.1103/PhysRevB.88.174103. DOI
Maisel S.B., Hoefler M., Mueller S. A canonical stability-elasticity relationship verified for one million face-centred-cubic structures. Nature. 2012;491:740. doi: 10.1038/nature11609. PubMed DOI
Friák M., Všianská M., Holec D., Zelený M., Šob M. Tensorial elastic properties and stability of interface states associated with Σ 5(210) grain boundaries in Ni3(Al,Si) Sci. Technol. Adv. Mater. 2017;18:273–282. doi: 10.1080/14686996.2017.1312519. PubMed DOI PMC
Craievich P.J., Weinert M., Sanchez J.M., Watson R.E. Local stability of nonequilibrium phases. Phys. Rev. Lett. 1994;72:3076–3079. doi: 10.1103/PhysRevLett.72.3076. PubMed DOI
Šob M., Wang L.G., Vitek V. Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects. Comput. Mater. Sci. 1997;8:100–106. doi: 10.1016/S0927-0256(97)00022-0. DOI
Wang L.G., Šob M., Zhang Z. Instability of higher-energy phases in simple and transition metals. J. Phys. Chem. Solids. 2003;64:863–872. doi: 10.1016/S0022-3697(02)00420-1. DOI
Friák M., Šob M., Vitek V. Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers. Phys. Rev. B. 2001;63:052405. doi: 10.1103/PhysRevB.63.052405. DOI
Qiu S.L., Marcus P.M., Ma H. Tetragonal equilibrium states of Mn and Fe. J. Appl. Phys. 2000;87:5932–5934. doi: 10.1063/1.372571. DOI
Spišák D., Hafner J. Complex reconstruction of γ-iron multilayers on Cu(100): Ab initio local-spin-density investigations. Phys. Rev. B. 2000;61:16129–16136. doi: 10.1103/PhysRevB.61.16129. DOI
Friák M., Hickel T., Körmann F., Udyansky A., Dick A., von Pezold J., Ma D., Kim O., Counts W.A., Šob M., et al. Determining the elasticity of materials employing quantum-mechanical approaches: From the electronic ground state to the limits of materials stability. Steel Res. Int. 2011;82:86–100. doi: 10.1002/srin.201000264. DOI
Friák M., Šob M., Vitek V. Ab initio calculation of tensile strength in iron. Phil. Mag. 2003;83:3529–3537. doi: 10.1080/14786430310001605588. DOI
Legut D., Friák M., Šob M. Phase stability, elasticity, and theoretical strength of polonium from first principles. Phys. Rev. B. 2010;81:214118. doi: 10.1103/PhysRevB.81.214118. DOI
Legut D., Friák M., Šob M. Why is polonium simple cubic and so highly anisotropic? Phys. Rev. Lett. 2007;99:016402. doi: 10.1103/PhysRevLett.99.016402. PubMed DOI
Šob M., Friák M., Legut D., Vitek V. Theoretical strength, magnetism and stability of metals and intermetallics. In: Turchi P., Gonis A., Rajan K., Meike A., editors. Complex Inorganic Solids. Springer; New York, NY, USA: 2005. pp. 307–325.
Šob M., Legut D., Friák M., Fiala J. Magnetism of Ni3Al and Fe3Al under extreme pressure and shape deformation: An ab initio study. J. Mag. Mag. Mat. 2004;272:E205. doi: 10.1016/j.jmmm.2003.12.598. DOI
Friák M., Šob M. Ab initio study of the bcc-hcp transformation in iron. Phys. Rev. B. 2008;77:174117. doi: 10.1103/PhysRevB.77.174117. DOI
Zelený M., Friák M., Šob M. Ab initio study of energetics and magnetism of Fe, Co, and Ni along the trigonal deformation path. Phys. Rev. B. 2011;83:184424. doi: 10.1103/PhysRevB.83.184424. DOI
Momma K., Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI