Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study

. 2018 Dec 16 ; 8 (12) : . [epub] 20181216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30558362

Grantová podpora
16-24711S Grantová Agentura České Republiky
17-22139S Grantová Agentura České Republiky
CEITEC 2020, LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
IPMINFRA, LM2015069 Ministerstvo Školství, Mládeže a Tělovýchovy

Quantum-mechanical calculations are applied to examine magnetic and electronic properties of phases appearing in binary Fe-Al-based nanocomposites. The calculations are carried out using the Vienna Ab-initio Simulation Package which implements density functional theory and generalized gradient approximation. The focus is on a disordered solid solution with 18.75 at. % Al in body-centered-cubic ferromagnetic iron, so-called α -phase, and an ordered intermetallic compound Fe 3 Al with the D0 3 structure. In order to reveal the impact of the actual atomic distribution in the disordered Fe-Al α -phase three different special quasi-random structures with or without the 1st and/or 2nd nearest-neighbor Al-Al pairs are used. According to our calculations, energy decreases when eliminating the 1st and 2nd nearest neighbor Al-Al pairs. On the other hand, the local magnetic moments of the Fe atoms decrease with Al concentration in the 1st coordination sphere and increase if the concentration of Al atoms increases in the 2nd one. Furthermore, when simulating Fe-Al/Fe 3 Al nanocomposites (superlattices), changes of local magnetic moments of the Fe atoms up to 0.5 μ B are predicted. These changes very sensitively depend on both the distribution of atoms and the crystallographic orientation of the interfaces.

Zobrazit více v PubMed

Sauthoff G. Intermetallics. VCH Verlagsgesellschaft; Weinheim, Germany: 1995.

Liu C.T., Stringer J., Mundy J.N., Horton L.L., Angelini P. Ordered intermetallic alloys: An assessment. Intermetallics. 1997;5:579–596. doi: 10.1016/S0966-9795(97)00045-9. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Liu C.T., Lee E.H., McKamey C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. 1989;23:875–880. doi: 10.1016/0036-9748(89)90263-9. DOI

Lynch R.J., Heldt L.A., Milligan W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. 1991;25:2147–2151. doi: 10.1016/0956-716X(91)90290-H. DOI

Liu C.T., McKamey C.G., Lee E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. 1990;24:385–389. doi: 10.1016/0956-716X(90)90275-L. DOI

Lynch R.J., Gee K.A., Heldt L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. 1994;30:945–950. doi: 10.1016/0956-716X(94)90420-0. DOI

Palm M., Inden G., Thomas N. The Fe-Al-Ti system. J. Phase Equilib. 1995;16:209–222. doi: 10.1007/BF02667305. DOI

Palm M., Lacaze J. Assessment of the Al-Fe-Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI

Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe-Al-Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI

Sundman B., Ohnuma I., Dupin N., Kattner U.R., Fries S.G. An assessment of the entire Al-Fe system including D0(3) ordering. Acta Mater. 2009;57:2896–2908. doi: 10.1016/j.actamat.2009.02.046. DOI

Kattner U., Burton B. Al-Fe (Aluminium-Iron) In: Okamoto H., editor. Phase Diagrams of Binary Iron Alloys. ASM International; Geauga County, OH, USA: 1993. pp. 12–28.

Allen S., Cahn J. Mechanisms of phase-transformations within miscibility gap of Fe-rich Fe-Al alloys. Acta Metall. Mater. 1976;24:425–437. doi: 10.1016/0001-6160(76)90063-8. DOI

Wang K., Wang Y., Cheng Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res.-Ibero-Am. J. Mater. 2018;21 doi: 10.1590/1980-5373-mr-2017-1048. DOI

Balagurov A.M., Bobrikov I.A., Sumnikov V.S., Golovin I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe3Al-type alloys. Acta Mater. 2018;153:45–52. doi: 10.1016/j.actamat.2018.04.015. DOI

Murakami Y., Niitsu K., Tanigaki T., Kainuma R., Park H.S., Shindo D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun. 2014;5 doi: 10.1038/ncomms5133. PubMed DOI PMC

Oguma R., Matsumura S., Eguchi T. Kinetics of B2-and D03 type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter. 2008;20:275225. doi: 10.1088/0953-8984/20/27/275225. PubMed DOI

Watson R.E., Weinert M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B. 1998;58:5981–5988. doi: 10.1103/PhysRevB.58.5981. DOI

Gonzales-Ormeno P., Petrilli H., Schon C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad. 2002;26:573. doi: 10.1016/S0364-5916(02)80009-8. DOI

Friák M., Neugebauer J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics. 2010;18:1316–1321. doi: 10.1016/j.intermet.2010.03.014. DOI

Friák M., Oweisová S., Pavlů J., Holec D., Šob M. An Ab Initio Study of Thermodynamic and Mechanical Stability of Heusler-Based Fe2AlCo Polymorphs. Materials. 2018;11:1543. doi: 10.3390/ma11091543. PubMed DOI PMC

Friák M., Holec D., Šob M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials. 2018;8:1057. doi: 10.3390/nano8121057. PubMed DOI PMC

Friák M., Slávik A., Miháliková I., Holec D., Všianská M., Šob M., Palm M., Neugebauer J. Origin of the Low Magnetic Moment in Fe2AlTi: An Ab Initio Study. Materials. 2018;11:1732. doi: 10.3390/ma11091732. PubMed DOI PMC

Šesták P., Friák M., Holec D., Všianská M., Šob M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials. 2018;8:873. doi: 10.3390/nano8110873. PubMed DOI PMC

Liu S., Duan S., Ma B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B. 1998;58:9705–9709.

Kulikov N.I., Postnikov A.V., Borstel G., Braun J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B. 1999;59:6824–6833. doi: 10.1103/PhysRevB.59.6824. DOI

Fähnle M., Drautz R., Lechermann F., Singer R., Diaz-Ortiz A., Dosch H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B Basic Solid State Phys. 2005;242:1159–1173. doi: 10.1002/pssb.200440010. DOI

Friák M., Deges J., Krein R., Frommeyer G., Neugebauer J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics. 2010;18:1310. doi: 10.1016/j.intermet.2010.02.025. DOI

Kirklin S., Saal J.E., Hegde V.I., Wolverton C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 2016;102:125–135. doi: 10.1016/j.actamat.2015.09.016. DOI

Airiskallio E., Nurmi E., Heinonen M.H., Vayrynen I.J., Kokko K., Ropo M., Punkkinen M.P.J., Pitkanen H., Alatalo M., Kollar J., et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010;52:3394–3404. doi: 10.1016/j.corsci.2010.06.019. DOI

Medvedeva N.I., Park M.S., Van Aken D.C., Medvedeva J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd. 2014;582:475–482. doi: 10.1016/j.jallcom.2013.08.089. DOI

Čížek J., Lukáč F., Procházka I., Kužel R., Jirásková Y., Janičkovič D., Anwand W., Brauer G. Characterization of quenched-in vacancies in Fe-Al alloys. Phys. B. 2012;407:2659–2664. doi: 10.1016/j.physb.2011.12.122. DOI

Ipser H., Semenova O., Krachler R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd. 2002;338:20–25. doi: 10.1016/S0925-8388(02)00177-9. DOI

Lechermann F., Welsch F., Elsässer C., Ederer C., Fähnle M., Sanchez J., Meyer B. Density-functional study of Fe3Al: LSDA versus GGA. Phys. Rev. B. 2002;65:132104. doi: 10.1103/PhysRevB.65.132104. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Connetable D., Maugis P. First principle calculations of the kappa-Fe3AlC perovskite and iron-aluminium intermetallics. Intermetallics. 2008;16:345–352. doi: 10.1016/j.intermet.2007.09.011. DOI

Lechermann F., Fähnle M., Meyer B., Elsässer C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B. 2004;69:165116. doi: 10.1103/PhysRevB.69.165116. DOI

Kellou A., Grosdidier T., Raulot J.M., Aourag H. Atomistic study of magnetism effect on structural stability in Fe3Al and Fe3AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B Basic Solid State Phys. 2008;245:750–755. doi: 10.1002/pssb.200743301. DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. B. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200. doi: 10.1139/p80-159. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Miháliková I., Slávik A., Friák M., Všianská M., Koutná N., Holec D., Šob M. First-principles study of interface energies in Fe-Al-based superalloy nanocomposites; Proceedings of the NANOCON 9th International Conference on Nanomaterials—Research & Application; Brno, Czech Republic. 18–20 October 2017; Ostrava, Czech Republic: Tanger Ltd.; 2018. pp. 69–74.

Amara H., Fu C.C., Soisson F., Maugis P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B. 2010;81:174101. doi: 10.1103/PhysRevB.81.174101. DOI

Zunger A., Wei S., Ferreira L., Bernard J. Special quasirandom structures. Phys. Rev. Lett. 1990;65:353–356. doi: 10.1103/PhysRevLett.65.353. PubMed DOI

Oganov A.R., Glass C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006;124:244704. doi: 10.1063/1.2210932. PubMed DOI

Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013;184:1172–1182. doi: 10.1016/j.cpc.2012.12.009. DOI

Oganov A.R., Lyakhov A.O., Valle M. How Evolutionary Crystal Structure Prediction Works—And Why. Acc. Chem. Res. 2011;44:227–237. doi: 10.1021/ar1001318. PubMed DOI

Bose S.K., Kudrnovský J., Drchal V., Turek I. Magnetism of mixed quaternary Heusler alloys: (Ni,T)2MnSn(T = Cu,Pd) as a case study. Phys. Rev. B. 2010;82:174402. doi: 10.1103/PhysRevB.82.174402. DOI

Mayrhofer P.H., Fischer F.D., Boehm H.J., Mitterer C., Schneider J.M. Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN. Acta Mater. 2007;55:1441–1446. doi: 10.1016/j.actamat.2006.09.045. DOI

Wu L., Chen M., Li C., Zhou J., Shen L., Wang Y., Zhong Z., Feng M., Zhang Y., Han K., et al. Ferromagnetism and matrix-dependent charge transfer in strained LaMnO3-LaCoO3 superlattices. Mater. Res. Lett. 2018;6:501–507. doi: 10.1080/21663831.2018.1482840. DOI

Koutná N., Holec D., Friák M., Mayrhofer P.H., Šob M. Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Mater. Des. 2018;144:310–322. doi: 10.1016/j.matdes.2018.02.033. DOI

Jiang M., Xiao H.Y., Peng S.M., Yang G.X., Liu Z.J., Zu X.T. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures. Sci. Rep. 2018;8:2012. doi: 10.1038/s41598-018-20155-0. PubMed DOI PMC

Wen Y.N., Gao P.F., Xia M.G., Zhang S.L. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles. Mod. Phys. Lett. B. 2018;32:1850098. doi: 10.1142/S0217984918500987. DOI

Friák M., Tytko D., Holec D., Choi P.P., Eisenlohr P., Raabe D., Neugebauer J. Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New J. Phys. 2015;17:093004. doi: 10.1088/1367-2630/17/9/093004. DOI

Dai Q., Eckern U., Schwingenschlog U. Effects of oxygen vacancies on the electronic structure of the (LaVO3)(6)/SrVO3 superlattice: A computational study. New J. Phys. 2018;20:073011. doi: 10.1088/1367-2630/aac486. DOI

Jiang M., Xiao H., Peng S., Qiao L., Yang G., Liu Z., Zu X. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: The Phase Stability and the Effects on the Band Structure and Carrier Mobility. Nanoscale Res. Lett. 2018;13:301. doi: 10.1186/s11671-018-2719-7. PubMed DOI PMC

Chen H., Millis A.J., Marianetti C.A. Engineering Correlation Effects via Artificially Designed Oxide Superlattices. Phys. Rev. Lett. 2013;111:116403. doi: 10.1103/PhysRevLett.111.116403. PubMed DOI

Mottura A., Janotti A., Pollock T.M. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co-3(Al,W) Intermetallics. 2012;28:138–143. doi: 10.1016/j.intermet.2012.04.020. DOI

Rosengaard N., Skriver H. Ab-initio study of antiphase boundaries and stacking-faults in L12 and D022 compounds. Phys. Rev. B. 1994;50:4848–4858. doi: 10.1103/PhysRevB.50.4848. PubMed DOI

Torres-Pardo A., Gloter A., Zubko P., Jecklin N., Lichtensteiger C., Colliex C., Triscone J.M., Stephan O. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys. Rev. B. 2011;84:220102. doi: 10.1103/PhysRevB.84.220102. DOI

Chawla V., Holec D., Mayrhofer P.H. Stabilization criteria for cubic AlN in TiN/AlN and CrN/AlN bi-layer systems. J. Phys. D Appl. Phys. 2013;46:045305. doi: 10.1088/0022-3727/46/4/045305. DOI

Cooper V.R., Rabe K.M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Phys. Rev. B. 2009;79:180101. doi: 10.1103/PhysRevB.79.180101. DOI

Chen B., Zhang Q., Bernholc J. Si diffusion in gaas and si-induced interdiffusion in gaas/alas superlattices. Phys. Rev. B. 1994;49:2985–2988. doi: 10.1103/PhysRevB.49.2985. PubMed DOI

Schmid U., Christensen N., Cardona M., Lukes F., Ploog K. Optical anisotropy in GaAs/AlSs(110) superlattices. Phys. Rev. B. 1992;45:3546–3551. doi: 10.1103/PhysRevB.45.3546. PubMed DOI

Gibson Q.D., Schoop L.M., Weber A.P., Ji H., Nadj-Perge S., Drozdov I.K., Beidenkopf H., Sadowski J.T., Fedorov A., Yazdani A., et al. Termination-dependent topological surface states of the natural superlattice phase Bi4Se3. Phys. Rev. B. 2013;88:081108. doi: 10.1103/PhysRevB.88.081108. DOI

Park C., Chang K. Structural and electronic-properties of GaP-AlP (001) superlattices. Phys. Rev. B. 1993;47:12709–12715. doi: 10.1103/PhysRevB.47.12709. PubMed DOI

Romanyuk O., Hannappel T., Grosse F. Atomic and electronic structure of GaP/Si(111), GaP/Si(110), and GaP/Si(113) interfaces and superlattices studied by density functional theory. Phys. Rev. B. 2013;88:115312. doi: 10.1103/PhysRevB.88.115312. DOI

Abdulsattar M.A. SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct. 2011;50:377–385. doi: 10.1016/j.spmi.2011.07.017. DOI

Botti S., Vast N., Reining L., Olevano V., Andreani L. Ab initio and semiempirical dielectric response of superlattices. Phys. Rev. B. 2004;70:045301. doi: 10.1103/PhysRevB.70.045301. PubMed DOI

Rondinelli J.M., Spaldin N.A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO3/OSrTiO3 superlattices. Phys. Rev. B. 2010;81:085109. doi: 10.1103/PhysRevB.81.085109. DOI

Giorgetti M., della longa S., Benfatto M. EXAFS and XANES simulations of Fe/Co hexacyanoferrate spectra by GNXAS and MXAN. J. Phys. Conf. Ser. 2009;190:012145. doi: 10.1088/1742-6596/190/1/012145. DOI

Westre T.E., Cicco A., Filipponi A., Natoli C.R., Hedman B., Solomon E.I., Hodgson K.O. Using GNXAS, a multiple-scattering EXAFS analysis, for determination of the FeNO angle in FeNO7 complexes. Phys. B Condens. Matter. 1995;208–209:137–139. doi: 10.1016/0921-4526(94)00650-K. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...